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Abstract

Automatic speech recognition has bene�ted a great deal from advances in
machine learning throughout the past decade. Convolutional neural net-
works have demonstrated the ability to e�ectively model speech signals,
exploiting temporal locality, but requiring very large amounts of input
data. To date, these technological advances have been mainly applied
to a small number of languages, such as English, German, Chinese and
Spanish.
In this thesis, I implemented Speech-to-Text-WaveNet, a convolutional

neural network architecture, on TFarsDat, a corpus of telephone conversa-
tions in Farsi, in order to test the replicability of deep learning-based tech-
niques for an under-resourced language. While the �nal results of the sys-
tem are far below state-of-the-art performance, the approach nonetheless
demonstrates the viability of deep learning-based ASR, presupposing the
existence of high-quality training data. I suggest that development of
large, gold-standard datasets for under-resourced languages such as Farsi
could be coupled with the proposed approach to improve the stat of ASR
systems more generally.
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1. Introduction

With computers becoming increasingly inseparable from our daily lives,
more and more, computers enter into the practice of human communic-
ation. In general, human interaction with a computer either targets the
computer as a responsive or non-responsive interlocutor (e.g. Siri, dict-
ation software) or uses the computer as an intermediary in an interaction
with another person (e.g. Skype, instant messaging). Norms from intra-
human interaction have in many cases carried over into our interaction
with computers: most often, a good computational interactant speaks or
writes as humanly as possible.
Speech is the primary mode of human communication, �guring into

diverse communicative genres, ranging from trivial everyday conversa-
tions to world-scale international negotiations. Unlike writing, which can
be digitised and processed fairly easily, automated processing of human
speech has proven a long-standing challenge. The potential bene�ts of
automated recognition of human speech, however, are many: computers
able to accurately recognise speech would potentially be able to transcribe,
to follow directions, and to converse.
The �eld of Automatic SpeechRecognition (ASR) has played a critical role in

the ever-advancing �eld of human-computer interaction since the 1950s
(Davis et al., 1952; Forgie and Forgie, 1959; Olson and Belar, 1956), with
major breakthroughs almost each decade. The use of Arti�cial Neural Net-
works (ANNs), intended to simulate the human brain, is one of the latest
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trends in speech recognition, achieving results that out-perform earlier
approaches (Lippmann, 1988). Deep learning has increased the accuracy
of speech recognisers such that they can now be used outside of carefully
controlled environments such as laboratories, and within consumer elec-
tronics such as personal computers, tablets and phones.

1.1. Automatic speech recognition

Traditionally, ASR systems are composed of two major components: the
front end and the decoder. Figure 1.1 shows the block diagram of a tradi-
tional ASR system.

Figure 1.1.: A typical automatic speech recognition system

The front end builds a spectrum representation of the incoming speech
wave. The most widely used features are Mel Frequency Cepstral Coe�cients
(MFCCs), also used in neural speech recognition systems (see Section 2.2.1).
The decoder block �nds the best match of word sequences for the input
acoustic features based on acoustic model, lexicon, and language model.
The lexicon is a database that stores the pronunciations of words and their
equivalent lexical representations/spellings, and the acoustic model pre-
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dicts the sound units (i.e. phonemes) based on extracted speech features.
The language model, in the �nal step, picks the best candidate among all,
based on the context and neighbouring words.
Deep learning has made it possible to build end-to-end speech recog-

nisers that take sound �les, and directly turn them into transcriptions.
These systems do not require all the components of a traditional ASR
system, but instead, very large amounts of training data. This training
data must contain a mapping of speech �les to the expected outputs, which
are usually either phonetically transcribed or standard-language written
versions of the utterances. The general architecture of a deep learning-
based speech recognition system is shown in Figure 1.2. It is a neural
network fed with input, in this case audio �les, trained to produce output
in the form of text.

Figure 1.2.: A neural speech recognition system

Audio �les contain recorded speech in the form of sound waves. Sound
waves are one-dimensional entities with a single value at every moment,
which is based on the height of the wave at that moment. Recording the
height of the wave at equally-spaced points is called sampling. In a neural
speech recognition system, the set of sound waves is transformed into a
purely numerical representation, and then fed into the neural network. In
general, a sampling rate of 16kHz (16,000 samples per second) is enough to
cover the frequency range of human speech, and thus to su�ce for speech
recognition tasks.
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To cope with the non-stationary nature of the speech signal, windows
of 20 to 40 milliseconds are taken to extract the parameters. These para-
meters are a representation of the frequency components of the signal.
Di�erent representations have been reported in the literature, but MFCCs
continue to be the most popular choice.
After the sound �les are transmitted and fed into the neural network

in chunks of 20- to 40 milliseconds, the neural network will try to pre-
dict which character(s) (phonemes or graphemes, depending on the task)
correspond to each chunk. Using the parameters in the trained model,
there will be a probability distribution over letters of the alphabet for each
chunk. Given this distribution, the most likely sequence of characters is
picked as the output sequence. This step, called output decoding, can be
done using di�erent algorithms. The resulting transcription then has to
be cleaned before it is presented as output. For instance, take a case where
the output sequence of characters for a piece of audio is SSSA_LL_AAAAM.
First, any repeated string of characters is replaced with only one character,
transforming SSSA_LL_AAAAM into SA_L_AM. Then the blanks are removed, and
the result is presented as the �nal transcription, SALAM (Hello, in Farsi).

1.2. Motivation of the thesis

While speech recognition is constantly improving, and new tools andmeth-
ods are under constant development, most work in the �eld to date has
focused on a small number of languages, such as English, German, Chinese
and Spanish. Out of more than 6,900 languages in the world, only a few
are well-resourced enough for useful implementation of Human Language
Technologies (HLT) (Besacier et al., 2014). Currently, ASR can be charac-
terised as conforming or contributing to the “global digital divide” (see
Chinn and Fairlie, 2007), where access to digital resources is concentrated
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in a small set of wealthy states and linguistic groups. This unequal avail-
ability of technologies such as ASR can hinder technological growth and
participation in the global economy for those without access, and function
for those who control the technology as mechanisms of neocolonialism
and control.
In the context of language and linguistics, as Besacier et al. (2014) sug-

gest, the “language divide” can be improved by increasing the generalis-
ability and portability of speech and language technologies formultilingual
applications, especially for under-resourced languages. Part of the prom-
ise of neural network-driven ASR is that it is language-agnostic, requiring
only training data in the target language in order to be successfully im-
plemented in a novel language.
This thesis focuses on Farsi, a language that is widely spoken, but which

is currently lacking in tools and resources for ASR. The work represents
an attempt to both test the portability of an existing deep neural network
ASR pipeline (Speech-to-Text-WaveNet—see Kim and Park, 2016), and to
build and implement an open-source system for Farsi ASR.

1.3. The Farsi language

Farsi, also known as Persian, is the most widely spoken member of the
Iranian branch of the Indo-Iranian languages within the Indo-European
language family. Farsi is the o�cial language of Iran, Afghanistan (where
it is o�cially known as Dari), and Tajikistan (known as Tajiki, since the
Soviet era) with approximately 110 million native speakers around the
world, and with at least 20 recognised dialects (Gordon et al., 2005). In
Iran, Farsi is written using the Persian alphabet, which is a modi�ed
version of Arabic alphabet. The Persian orthographic system consists of
32 graphemes for consonants and 6 graphemes for vowels. Some of these
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graphemes represent one single phoneme in Farsi, but di�erent phon-
emes in Arabic. Table A1 in the appendix, borrowed from Bijankhan et al.
(2003), lists phonemes in Farsi, their corresponding IPA representation,
orthographic representation in the Persian alphabet, and a brief phonetic
gloss. Short vowels in Farsi (represented in IPA as e, a and o) are optional
in written Farsi in unambiguous cases; for this reason, they are often
elided. This results in a loose grapheme-to-phoneme mapping in the
writing system, and thus poses a potential challenge to grapheme-based
ASR.
Within Farsi dialects, there is also a great deal of phonological, lexical

and grammatical variation. Ketabi Farsi, generally seen as “standard” or
“formal” Farsi, is the main language of books and newspapers (ketab, in
fact, means book). Colloquial Farsi (encompassing a number of regional
dialects), on the other hand, is the common language of everyday inter-
actions. The di�erence between these two modes is signi�cant enough
to cause serious challenges for NLP systems, trained on data from the
standard written form. For instance, informal Farsi has shortened verbal
stems and in�ectional endings (Megerdoomian, 2006). Table 1.1 lists con-
jugations of the verb goftan (English: to say) in present tense, in formal
and conversational Farsi (Tehrani accent). The �rst morpheme, mi, is a
verbal pre�xmarking continuity. The second part, gu, is the stem, which is
shortened and reduced to a single consonant, g, in conversational speech.
The last part is the in�ectional su�x marking person and number, also
shortened in conversational Farsi.
State-of-the-art ASR systems for Farsi can recognise continuous speech

in Ketabi Farsi (Sameti et al., 2011), but colloquial speech still poses a
problem for these systems. Phonological/dialectal variations, for example,
can result in Out Of Vocabulary words that are problematic for traditional
speech recognition systems that rely on a lexicon.
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Person Number Formal Farsi Informal Farsi
1st Singular mi-gu-yam mi-g-am2nd Singular mi-gu-yi mi-g-i3rd Singular mi-gu-yad mi-g-e1st Plural mi-gu-yim mi-g-im2nd Plural mi-gu-yid mi-g-id3rd Plural mi-ug-yand mi-g-an

Table 1.1.: Conjugation of goftan (to say) in formal and informal Farsi inTehrani accent

1.4. Aim and scope of the thesis

The aim of this thesis is to build a deep learning-based ASR system that
can recognise colloquial Farsi in di�erent dialects and output a norm-
alised phonetic representation in Ketabi Farsi. This is accomplished by
repurposing two main resources:
1. Speech-to-Text-WaveNet, a speech-to-text pipeline that implements
a convolutional neural network in TensorFlow

2. TFarsDat, a corpus of phonetically transcribed Farsi telephone con-
versations in both Ketabi and colloquial Farsi

A secondary aim is to evaluate the challenges encountered during this
process, and to identify pathways toward higher quality speech-to-text
systems for Farsi as an under-resourced languages.
The thesis is necessarily constrained in scope. First, despite the fact that

dialects of Farsi vary at phonological, lexical and grammatical levels, nor-
malisation of the data targeted only phonological variation. Second, the
thesis focuses on using existing training data, rather than on development
of a gold-standard collection of Farsi transcriptions built speci�cally for
the purposes of dialect normalisation. Results are therefore bound to the
quality of the existing dataset.
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1.5. Research Questions

1. What are the major challenges in implementing a deep learning-
based ASR pipeline for Farsi?

2. To what extent can an existing pipeline (namely, Speech-to-Text-
WaveNet—see Kim and Park, 2016) and training dataset (TFarsDat—
see Bijankhan et al., 2003), be repurposed for dialect normalisation
in Farsi?

1.6. Overview of the thesis

Chapter 1 has introduced the context, aims, scope and research questions
of the thesis, with special attention paid to Farsi, the target language of
the developed ASR system.
Chapter 2 reviews past and present ASR research, framing state-of-the-
art developments in a historical context. The chapter also provides an
overview of available ASR research on Farsi.
Chapter 3 presents the datasets and tools used in this study, and describes
the architecture of the developed speech recognition pipeline.
Chapter 4 presents the research design of three experiments, as well as
their results and evaluation measures.
Chapter 5 outlines the contributions and limitations of the thesis, and
discusses directions for possible future work.
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2. Literature Review

Automatic computational recognition of human speech has long been of
interest to researchers both in academia and industry. For this reason,
the �eld has both a long history and a great deal of current activity. In
this chapter, I �rst summarise key historical developments in the �eld of
speech recognition. With this context established, I synthesise literature
describing contemporary approaches to ASR and state-of-the-art tech-
niques, and then present a short overview of existing ASR research for
Farsi.

2.1. History of ASR

Research into ASR dates back to the early 1950s, when the �rst ASR system
was made for single-speaker digit recognition by Bell Laboratories. This
system worked by locating formant frequencies, which are manifested as
major regions of energy concentration, in the power spectrum of each ut-
terance, and matching them with patterns (Davis et al., 1952). Other early
recognition systems from this period include the single-speaker syllable
recogniser of Olson and Belar (1956) and Forgies’ speaker-independent
ten-vowel recogniser (Forgie and Forgie, 1959).
In the 1960s two researchers at Kyoto University employed a speech

segmenter for the �rst time, making it possible to recognise and analyse
individual words within an input utterance (Sakai and Doshita, 1962). As
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the �rst project to focus on processing of natural language, rather than
speech sounds or words in isolation, it may be seen as the �rst attempt
at creating a continuous speech recognition system (Juang and Rabiner,
2005). Later in the decade, Soviet researchers devised the Dynamic Time
Warping (DTW) algorithm and used it to create a recogniser capable of oper-
ating on a 200-word vocabulary (Velichko and Zagoruyko, 1970). The DTW
algorithm, still in use today, divides the speech signal into short frames,
e.g. 10 millisecond segments, and processes each frame as a single unit.
Despite the breakthroughs associated with segmentation of speech signals,
implementations in this period were constrained in scope, handling only
speci�c phonemes or words; analysis of unconstrained continuous speech
remained a distant goal.
During the early 1970s, the Defense Advanced Research Projects Agency

(DARPA) of the U.S. Department of Defense started funding the Speech
Understanding Research (SUR) programme, working in cooperation with
a number of research institutes and private companies in the United States.
IBM was focused on creating a “voice-activated typewriter”, which con-
verted a spoken utterance into a sequence of letters that could be typed
on paper or displayed on a screen (Jelinek et al., 1975)—a task generally
referred to as transcription. They built a speaker-dependent speech recog-
nition system, equipped with a language model and a large vocabulary. At
AT&T Bell Laboratories, on the other hand, the focus was on speaker-
independent speech recognition. Their goal was to provide automated
telecommunication services to the public. To achieve this, systems were
needed that could successfully process input from speakers with di�er-
ent regional accents, without the need for individual speaker training.
Their approach involved the development of speech clustering algorithms,
which built word and sound reference patterns containing information
about dialectal variants of a given phoneme. Research at Bell Laborator-
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ies emphasised keyword spotting as a basic form of speech understanding
(Wilpon et al., 1990). Keyword spotting is a technique aimed at detecting
salient terms (i.e. ideationally rich content words) embedded in a longer
utterance, while paying less attention to closed-class/function words (de-
terminers, conjunctions, prepositions, etc.).
The introduction of Linear Predictive Coding (LPC) (Atal and Hanauer, 1971;

Itakura, 1970) in the 1970s changed the approach toward input signals.
LPC is a tool for representing the spectral envelope of a digital speech
signal in compressed form, using the information of a linear predictive
model (Deng and O’Shaughnessy, 2003). In the decades to come, ex-
tracting features from the speech signal before inputting them into the
system became state-of-the-art technique, with feature extraction be-
coming a major research interest. Later in the 1980s, Perceptual Linear
Prediction (PLP) coe�cients (Hermansky, 1990) and Mel-Frequency Cepstral
Coe�cients (MFCCs) (Davis and Mermelstein, 1980) were introduced. These
approaches are still in use today, including the experiments in this thesis.
Section 2.2.1 below gives a detailed explanation of MFCCs.
The dominant approach to speech recognition in the 1970s was a template-

based pattern recognition paradigm, in combination with acoustic-phonetic
methods. This methodology shifted toward a statistical modelling frame-
work in the 1980s. Hidden Markov Models (HMMs) became the preferred
method for speech recognition and stayed so for long after the theory was
initially published (Ferguson et al., 1980; Levinson et al., 1983). The use
of HMMs allowed researchers to combine di�erent sources of knowledge,
such as acoustic models and language models, in a uni�ed probabilistic
model.
With the widespread use of HMM techniques, researchers realised that

the performance of the system was being constrained by limitations on the
form of the density functions. This was particularly harmful for speaker-
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independent tasks. These limitations were partially overcome by extend-
ing the theory of HMM to mixture densities (Juang, 1985; Lee et al., 1990)
to ensure satisfactory recognition accuracy, particularly for speaker-in-
dependent, large-vocabulary speech recognition tasks. This extension of
the HMMs is called Gaussian Mixture Models (GMMs).
In the late 1980s, Arti�cial Neural networks (ANNs) emerged as a new ap-

proach to acoustic modelling in ASR. Neural networks were �rst introduced
by McCulloch and Pitts (1943) as an attempt to mimic the human neural
processing mechanism. While the approach attracted little attention ini-
tially, it was revived in the 1980s with the advent of Parallel Distributed
Processing (PDP), known as Connectionism today. PDP is an arti�cial neural
network approach that stresses the parallel nature of neural processing,
and the distributed nature of neural representations. Lippmann (1988)
reported success using neural networks for preliminary speech recognition
in constrained tasks such as vowel classi�cation and digit recognition.
Later, Lippmann (1989) speci�cally described the potential for neural net-
works to o�er new algorithmic approaches to problems in speech recog-
nition.
In the 1990s Bourlard and Morgan (1993) built a hybrid speech recog-

niser, replacing the GMMwith a single-layered neural network in an HMM-
based system. This method successfully predicted the correct HMM, but
the performance was still lower than the GMM-HMM architecture. The
main reason for this were that large amounts of high-quality training data
and computational resources capable of performing the large numbers of
calculations necessary for neural networks were lacking at that time.
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2.2. State of the art

The introduction of DeepNeuralNetworks (DNNs) in the past decade, coupled
with growing a�ordability of high-performance computing, has resolved
many historical challenges in ASR. A DNN is a feed-forward, arti�cial
neural network that has multiple layers of hidden units between its in-
puts and its outputs. DNNs can approximate any function with desired
accuracy given enough layers and nodes. Hinton et al. (2012) report the
DNN approach showing signi�cant improvements over Gaussian Mixture
Model-Hidden Markov Model (GMM-HMM) systems in a variety of state-
of-the-art ASR systems.
Using DNNs to build complete ASR systems is one of the latest advances

in ASR (Graves et al., 2006; Graves, 2012b,a; Graves and Jaitly, 2014).
Graves and Jaitly (2014) combine a deep bidirectional LSTM network ar-
chitecture with a Connectionist Temporal Classi�cation (CTC) objective func-
tion (see Section 2.2.2) to build an end-to-end speech recogniser, which
directly transcribes audio data to text without an intermediate phonetic
representation. They report a word error rate of 27.3% on the Wall Street
Journal corpus with no prior linguistic information, and 8.2% with a tri-
gram language model.

2.2.1. Mel Frequency Cepstral Coe�cients (MFCCs)

The �rst step in any machine learning task is to extract relevant features
from data in order to reduce data complexity. Feature extraction in the
context of ASR involves identifying the components of the audio signal that
are characteristic of the linguistic content, while discarding all the other
non-linguistic sounds that carry information like background noise, line
noise, etc. The most commonly used feature extraction method in ASR
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is Mel-Frequency Cepstral Coe�cients (MFCCs). MFCCs were introduced by
Davis and Mermelstein (1980), and have been state-of-the-art ever since.
To extract features that contain all information about the linguistic con-

tent, MFCCmimics some parts of the human speech production and speech
perception. Sounds generated by a human are �ltered by the shape of the
vocal tract. This shape determines what sound comes out. Subsequently,
if we can determine the shape, it should give us a representation of the
phoneme being produced. The shape of the vocal tract manifests itself
in the envelope of the short time power spectrum, and MFCCs can ac-
curately represent this envelope. They also eliminate speaker dependent
characteristics by excluding the fundamental frequencies, which makes
them suitable for speaker-independent speech recognition tasks.
The �owchart for implementation of Mel-Frequency Cepstral Coe�-

cients algorithm is shown in Figure 2.1 below. The steps to computeMFCCs
are as follows:
1. Frame the signal into short (10–25ms) frames.
2. For each frame calculate the periodogram estimate of the power spec-
trum.

3. Apply the mel �lterbank to the power spectra, sum the energy in each
�lter.

4. Take the logarithm of all �lterbank energies.
5. Take the Discrete Cosine Transform (DCT) of the log �lterbank ener-
gies.

6. Choose the number of cepstral coe�cients (typically in a range of 13
to 20) for further processing, keep them and discard the rest.
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Figure 2.1.: Block diagram of the MFCC algorithm

2.2.2. Connectionist Temporal Classi�cation (CTC)

As a sequence learning task, ASR requires a tool for prediction of labels
from an unsegmented acoustic signal. Neural Networks need aligned input
and output data in order to learn to classify and label the speech signals.
Connectionist temporal classi�cation (CTC), �rst introduced by Graves et al.
(2006), is the state-of-the-art sequence learning algorithm used with
neural networks for labelling unsegmented data sequences. The approach
involves transforming network outputs into a probability distribution over
all possible label sequences, given an input sequence. An objective func-
tion is then de�ned that maximises the probability of the correct labelling,
given the distribution. This optimisation problem can be solved using the
forward–backward algorithm.
The CTC algorithm, explained in three steps below, removes the pre-

segmentation and post-processing steps in an automatic speech recog-
nition pipeline.
1. The ANN output neurons, called c here, encode a distribution over the
symbols in the alphabet (see Figure 2.3). In a grapheme-basedmodel,
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Figure 2.2.: Forward-backward algorithm applied to labelling of CAT (fromGraves et al., 2006)
.

c takes on a value from the set union of the alphabet, blank, and space,
if the language has spaces in it. In case of English this would mean
c ∈ {A,B,C, ..., Z, blank, space}. With an independence assumption, the
distribution of all possible sequences of characters over the alphabet
can be de�ned by

P (c|x) ≡
N∏
i=1

P (ci|x) (2.1)
For instance, the probability of the string SSS–A-LL–AM- is calculated
by multiplying the probabilities of each of its characters given the
input audio:

P (c|SSS−−A−LL−−AM−−) ≡ P (c1 = S|x)P (c2 = S|x)...P (c15 = blank|x)

The symbol sequence c has the same length as the audio input x, but
this might not be equal to the length of the transcription y.

2. The output sequence c is then mapped into the transcription y by a
function β

β(c)→ y (2.2)
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Figure 2.3.: Probability distribution of the output neurons c over the outputalphabet given the spectogram representation of the inputaudio

This mapping function discards duplicates in a string of similar ad-
jacent characters, and then drops all of the blanks in the character
sequence c, to yield the transcription y.

y = β(c) = β(SSS −−A− LL−−AM −−) = ”SALAM”

Since c is a probabilistic entity, this mapping function will also res-
ult in a distribution over all possible �nal transcriptions y. Going
through all possible combinations c, it might be the case that several
of these combinations are mapped into a single transcription y. The
probability of a transcription y is then computed by summing over all
possible choices of c that correspond to y.

P (y|x) =
∑

c:β(c)→y

P (c|x) (2.3)
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This operation solves the problem of variable input length, caused by
di�erences is speech rate, accent, or other factors.

3. Finally, network parameters θ are updated to maximise the likelihood
of the correct transcription y*, given the audio input x, for all data
points i.

θ∗ = argmax
θ

∑
i

logP (y∗(i)|x(i)) (2.4)
Combining equations 3.3 and 3.4 will result in the following equation

θ∗ = argmax
θ

∑
i

log
∑

c:β(c)→y∗(i)
P (c|x(i)) (2.5)

which says the probability of a given transcription is the summation
of all possible symbol sequences that could have given that transcrip-
tion.

Graves et al. (2006) provide a dynamic programming algorithm that can
e�ciently compute the summation and its gradient with respect to c, the
output neurons of the neural network.
Given network outputs and target labels, there are software packages

available that run the CTC algorithm and compute CTC loss from c, y* and
gradient with respect to c. CTC computes as cost function (or objective
function), the negative log likelihood of the probability of the target tran-
scription given the output of the neural network, while the output of the
neural network is the probability distribution over the alphabet given the
sound signal.

CTCloss = −logP (y∗(i)|c(i)) (2.6)
As the CTC loss decreases the probability that the parameters are set to
�t the transcriptions increases. This makes CTC loss a good measure for
tuning the hyperparameters and model selection.
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2.2.3. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) as an alternative type of neural net-
works, have shown bene�ts over other neural networks in the �elds of
computer vision, image recognition, and speech recognition, with their
ability to model local correlations between input features (LeCun et al.,
2004; Lawrence et al., 1997; Abdel-Hamid et al., 2012). A complete de-
scription of the di�erent kinds of CNN is out of the scope of this document.
However, in order to set the scene for implementation con�gurations,
short descriptions are given together with some references which have
described them in more details.
CNNs are a class of feed-forward deep neural networks that consist of

one or more convloutional layers and optional pooling and fully-connected
layers. Inspired by the mammalian visual cortex, CNNs use weights called
�lters (or kernels) that detect speci�c attributes. As the input progresses
through each layer, the �lters are able to recognise more complex attrib-
utes.
The fundamental layer in a convolutional neural network is a convol-

utional layer. The output of this layer is called a feature map. In order
to generate a feature map, the �lter which is an array/matrix of numbers
slides through the input array/matrix and the element-wise production of
the two arrays/matrices is placed in the corresponding slot in the feature
map. This operation is called convolution. The number of data points
between each convolution is called a stride.
Each convolution layer is conventionally followed by an activation layer,

whose purpose is to introduce non-linearity to the system. The activa-
tion layer applies either tanh and sigmoid functions, or a function f(x) =
max(0, x) , called a Recti�ed Linear Unit(ReLU), to all of the values in the
input volume.
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The pooling layer in a CNN reduces the size of the feature map and
simpli�es computations in later layers by down-sampling the featuremap.
There are di�erent functions for implementation of the pooling layer,
including max pooling. Max pooling slides a window over the feature map,
and at each slot, outputs the largest values in the window and discards the
rest.
The fully-connected layer will eventually produce class scores from the

output neurons which are used for classi�cation. This layer performs the
same duty in a CNN as in a standard ANN.
In a CNN each of these layers can be multiply stacked on one another. In

addition to the order and number of the layers, there are other hyperpara-
meters that can be modi�ed in a CNN. The size and number of �lters in
the convolution layer, and the size of the window used in the max pooling
layer, are some of these hyperparameters.
Recent uses of CNNs in language processing have yielded promising

results. Sainath et al. (2013) applied CNNs to large vocabulary speech
recognition tasks. They implemented a CNN with two convolutional and
four fully-connected layers on 300 hours of conversational American Eng-
lish telephony data from the Switchboard Corpus, and reported 21.9%word
error rate. Sainath et al. (2015) also proposeed various CNN architectures,
with modi�cations in the number of convolutional and fully-connected
layers, number of hidden units, �lter sizes, type of pooling, and some
other speci�cations, and reported a word error rate of 13.6% on 50 hours
of English Broadcast News (BN) corpus, 12.7% on 400 hours of BN and
10.7% on 300 hours of Switchboard corpus.
Qian and Woodland (2016) developed a novel CNN architecture, termed

Very Deep CNN (VDCNN) for noise robust speech recognition. They rep-
orted a word error rate of 13.52% on a subset of “noisy data with channel
distortion” from Aurora 4 task, without using front end denoising. Aurora

20



4 (Pearce and Picone, 2002) is a speech recognition task based on the
Wall Street Journal Corpus (WSJ0). It consists of 16kHz speech data in the
presence of additive noises and linear convolutional channel distortions,
which were introduced synthetically to clean speech from WSJ0.
The optimal architecture of a CNN for large scale speech recognition

has been subject of many other studies as well, mostly with English as
the target language (Palaz et al., 2015; Song and Cai, 2015; Abdel-Hamid
et al., 2014). This work borrows its architecture from WaveNet, a deep
convolutional neural network originally designed for speech synthesis, and
modi�es it for speech recognition (van den Oord et al., 2016).

2.2.4. WaveNet

WaveNet (van den Oord et al., 2016), �rst introduced in 2016, is a deep
convolutional neural network. The convolutional layers in WaveNet have
various dilation factors that allow its receptive �eld to grow exponentially
with depth and cover thousands of timesteps. Figure 2.4 represents the
architecture of this fully-convolutional neural network.

Figure 2.4.: Visualisation of a stack of dilated convolutional layers (fromvan den Oord et al., 2016)
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WaveNet enlarges the receptive �led by using atrous convolution or dilated
convolution. Dilating the �lter means expanding its size by �lling the
empty positions with zeros. In practice, no expanded �lter is created;
instead, the �lter elements (the weights) are matched to distant (not ad-
jacent) elements in the input matrix. The distance is determined by the
dilation coe�cient. In WaveNet, the dilation coe�cient is doubled for
every layer up to a limit and then repeated. e.g:

1,2,4,...,512,1,2,4,...512,1,2,4,...,512.

The activation unit in WaveNet is given in Equation 3.7 below:

y = tanh(Wf,k ∗ x)� σ(Wg,k ∗ x) (2.7)

In this equation, ∗ denotes a convolution operator, � denotes an element-
wise multiplication operator, σ(.) is a sigmoid function, k is the layer
index, f and g denote �lter and gate respectively, and W is a learnable
convolution �lter (van den Oord et al., 2016). There are no pooling layers
in the network, and the last layer is a softmax layer, optimised tomaximise
the log likelihood of the output data with respect to the parameters.
WaveNet employs both residual and skip connections throughout the

network. As suggested by He et al. (2016) residual and parameterised skip
connections speed up convergence and enable training of much deeper
models. The architecture of a residual block is shown in the bottom-right
corner of Figure 3.1 in the next chapter.

2.3. ASR in Farsi

It is only in the past 20 years that speech recognition for Farsi has been ad-
dressed by Iranian researchers (Babaali and Sameti, 2004; Babaali, 2004).
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The �rst continuous speech recogniser for Farsi was built in 1997, with
a hybrid architecture of neural networks (a Self-Organising Feature Map,
and a Multi-Layer Perceptron). This system recognises Farsi phonemes in
the �rst step, and in the next step the string of phonemes are corrected,
segmented and converted to formal text using a non-stochastic method
(Sheikhan et al., 1997).
In 2003, Iranian researchers started to develop a large vocabulary speaker-

independent Farsi continuous speech recognition system, called Nevisa.
The development of this system has since been ongoing; today, Nevisa is
the state-of-the-art speech recognition engine for Farsi. Nevisa is an
HMM-based system which uses MFCC features of speech signals with
some modi�cations. It features environmental noise robustness tech-
niques, as well as statistical and grammatical language models (Sameti
et al., 2011). The reported word error rate of this system, using a trigram
language model, is 21.76%.
To date, however, there has been no research on the use of deep learn-

ing methods for speech recognition in Farsi. The experiments described
in Chapter 4 represent a �rst step toward a deep learning-based speech
recogniser for spontaneous speech in Farsi that can handle registerial/
dialectal variations.
A key advantage of CNN approaches to ASR, is that they are theoretic-

ally language-agnostic, requiring no hard-coded linguistic rules, but only
high-quality training data in a given language. This means that global
developments in CNN approaches to ASR can be more easily exploited for
other under-resourced languages than earlier methods. The production
of a stable, language-agnostic pipeline for CNN-based ASR is therefore
timely.
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2.4. Chapter summary

In this chapter, I introduced key concepts in contemporary ASR, and situ-
ated them in a historical context. CNNs were proposed as a viable approach
to ASR for under-resourced languages, Farsi in particular. In the next
chapter, I describe currently available datasets and an open-source CNN
implementation for ASR, which form major components in my experi-
ments, presented in Chapter 4.
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3. Data and Tools

In the previous chapter, I reviewed literature concerning neural-network
approaches to ASR. In this chapter, I introduce the data and software tools
used in this thesis. This includes TensorFlow, Speech-to-Text-WaveNet,
and network con�gurations which remain constant for all experiments
presented in Chapter 4.

3.1. Data

Two di�erent speech corpora are used for the experiments in this project
in two di�erent languages: English, and Farsi. The English dataset, CSTR
VCTK, is a read speech corpus (i.e. recordings of written text being read
aloud), while the Farsi dataset, TFarsDat, is a corpus of telephony spon-
taneous speech.
VCTK was initially chosen since it is the closest subset of Speech-to-

text-WaveNet’s original implementation to TFarsDat in terms of size. An-
other feature of this dataset that makes it suitable for this project, is that
like TFarsDat, it contains speech in various dialects. It also makes a good
baseline dataset with top-baseline results, by virtue of being a corpus of
clean read speech.
The ideal corpus for a dialect normalisation task in Farsi, would be a

corpus with clean conversational speech, carefully transcribed in Ketabi/
formal Farsi. TFarsDat has the bene�t of being transcribed with both
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“Phonetic” and “Phonemic” labels(i.e. in both colloquial and formal lan-
guage), and it is the only available corpus of conversational Farsi to date.
The downside of this dataset is that it contains a lot of noise, as can be
expected in a corpus of telephony speech.
The details of each of these corpora follows.

3.1.1. CSTR VCTK Corpus

The CSTR VCTK Corpus (Veaux et al., 2017) includes speech data uttered by
109 native speakers of English with various accents. The ratio of female
to male speakers is 62/47 (57% female, 43% male), with each speaker
reading approximately 400 sentences aloud. Some of these sentences were
selected from a newspaper and some are either from the Rainbow Passage
or an elicitation paragraph intended to identify the speaker’s accent. The
newspaper texts were taken from TheHerald (Glasgow). Each speaker reads
a di�erent set of the newspaper sentences, where each set was selec-
ted using a greedy algorithm designed to maximise the contextual and
phonetic coverage. The Rainbow Passage and the elicitation paragraph
are the same for all speakers. The Rainbow Passage can be found in the
“International Dialects of English Archive” webpage (Meier and Muller,
1998). The elicitation paragraph is the same as the one used for “The
Speech Accent Archive” (Weinberger and Kunath, 2011).
All speech data was recorded using an identical recording setup: an

omni-directional head-mountedmicrophone (DPA 4035), 96kHz sampling
frequency at 24 bits and in a hemi-anechoic chamber of the University
of Edinburgh. All recordings were converted into 16 bits, were down-
sampled to 48 kHz, and were manually end-pointed.
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3.1.2. TFarsDat

TFarsDat (Bijankhan et al., 2003), the Telephone Farsi Speech Database, is
an audio collection of phone conversations between pairs of 202 di�erent
speakers (Bijankhan et al., 2003). All participants are native speakers of
Farsi with di�erences in age, gender, education level, and dialect. The
participants consist of 77 female and 125 male speakers (62% male, 38%
female). Audio �les in TFarsDat have been recorded with a 16-bit audio
card, sampled at 11kHz. A linguist has transcribed and labelled the data at
word and phoneme levels using purpose-built software.
Non-linguistic sounds and noises such as movement of the lips, hes-

itation sounds, line noise, and environmental noises have been labelled
as well. Each word-level phonetic label has also been labelled with the
equivalent of the spoken word in Ketabi (formal) Farsi. The phonetic labels
indicate the actual sounds uttered by the speakers and the phonemic labels
are the standard word forms per Ketabi Farsi. An example of a formal–
informal word pair in the dataset is mi]/yim: miy/ym. The �rst element is
the standard form of the word in Ketabi Farsi, and the second one is the
phonetic realisation of the word in the telephone conversation.
Each audio �le has been transcribed using a combination of Latin alpha-

betical and punctuation characters. For example, the character “.” (point)
denotes the fricative S (“sh”) and the character “'" (single quote) denotes
the a�ricate tS (“ch”). Table A2 in the Appendix shows the mapping of
transcription labels to their corresponding IPA characters. Apart from the
words, non-linguistic and paralinguistic noises have also been labeled in
the transcriptions. These include breath noise, silence, laughter, and some
other noises as shown in Table A3 in the Appendix.
The transcriptions are all stored in XML format, with Start, End, Phonetic,

Phonemic and Description labels. Start and End point to the data points

27



at which the word starts and ends in the audio �le. Phonetic gives the
transcription of the word as uttered in the audio �le. Phonemic contains
the equivalent of the spoken word in Ketabi Farsi. Finally, the formal
equivalent of uttered word in Persian alphabet is given in Description.

3.2. End-to-end speech recognition tools

Progress in ASR research, coupled with increasing computer power and
a�ordability, has made possible the accurate recognition of clean speech
spoken in standard dialects of numerous languages. ASR systems have
transformed from simple template-based systems to highly complex deep
learning-based systems.
A major factor in the improvement of ASR performance has been de-

velopments in machine learning. In this section, I review some of the
most important machine learning and speech processing tools for ASR,
and Speech-to-Text-WaveNet, the implementation of WaveNet for speech
recognition, employed in this thesis.

3.2.1. Network con�guration: Speech-to-Text-WaveNet

The experimental setup of the current work is adapted from Speech-to-
Text-WaveNet (Kim and Park, 2016), a TensorFlow implementation of a
DeepMind paper on speech synthesis (van den Oord et al., 2016), modi�ed
for a speech recognition task. The architecture of Speech-to-Text-Wave-
Net is shown in Figure 3.1.
Speech-to-Text-WaveNet includes three blocks of dilated convolutional

neural networks, each block starting with a dilation coe�cient of one,
doubled at every layer up to 16. The �lter size is seven, and the network
is trained with 128 hidden units. The output decoder in Speech-to-Text-
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Figure 3.1.: Speech-to-Text-WaveNet pipeline’s architecture

WaveNet is a beam search decoder. The same con�guration is used for all
experiments described in the next chapter.

3.2.2. Feature extraction: LibROSA

As shown in Figure 3.1, speech waves are turned into MFCCs, before being
fed to the network. Feature extraction is performed using LibROSA, an
open-source Python package for music and audio analysis. At a high
level, LibROSA provides implementations of a variety of common functions
used throughout the �eld of music information retrieval and digital signal
processing (McFee et al., 2015). The librosa.feature module implements
a variety of spectral representations, including MFCCs. As mentioned in
Section 2.2.1, Mel Frequency Cepstral Coe�cients are commonly used to
represent audio signals, as they provide a roughmodel of human frequency
perception. librosa.feature.mfcc provides a function for extracting MFCC
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features. Feature extraction in all experiments described in Chapter 4 is
performed using LibROSA.
To get the MFCC feature vectors, the audio signal is divided into frames

of 25 milliseconds long. This means the frame length for a 16kHz signal
is 0.025× 16000 = 400 samples. A step of 10 milliseconds (0.001× 16000 = 160

samples) is taken to move to the next frame, which allows some overlap
in the frames. The �rst 400 sample frame starts at sample 0, the next 400
sample frame starts at sample 160, etc., until the end of the speech �le is
reached. The speech �les that do not divide into an even number of frames
are padded with zeros so that they do. One set of 20 MFCCs is extracted
for each frame.

3.2.3. Model implementation: TensorFlow

All implementations in this project are performed using TensorFlow (Abadi
et al., 2016). TensorFlow is a library for machine learning across a range of
tasks. It was developed by the Google Brain team for internal Google use,
but later released as open-source software. One advantage of TensorFlow
over other libraries is that it can run on multiple CPUs and GPUs, making
the training process much faster than non-parallel training.
TensorFlow’s tf.nn module supports neural network algorithms. The

convolutional neural network is built using this module with con�gur-
ations speci�ed in Section 3.2.1. tf.nn.ctc_loss() is a function that com-
putes the CTC loss, given the output sequence and target labels. The �nal
output decoding is performed using tf.nn.ctc_beam_search_decoder(). This
function runs beam search with a width of 100, on the logits given the input
and returns the �nal transcription.
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3.3. Reference implementation

Speech-to-Text-WaveNet (Kim and Park, 2016) was originally trained on
data from three English speech corpora: VCTK (Veaux et al., 2017), Lib-
riSpeech (Panayotov et al., 2015) and TED-LIUM, Release 2 (Rousseau
et al., 2012). The total number of sentences in the training set composed
of the above three corpora is 240,612. Validation and test sets are avail-
able only for LibriSpeech and TED-LIUM; the VCTK Corpus does not have
distinct validation and test sets. While the authors of Speech-to-Text-
WaveNet have not reported the results of the experiment in terms of label
error rate, they have provided a Docker image of their system, facilitat-
ing reproduction of their experiments. Testing the Dockerised Speech-
to-Text-WaveNet system gave observably high-quality output. Table 3.1
shows examples of pairs of output-target sentences from this implement-
ation.

Output Target
1 he hoped there would be stoo for

dinner turnips and charrats and
bruzed patatos and fat mutton
pieces to be ladled out in th
thick peppered flower fatan sauce

HE HOPED THERE WOULD BE STEW FOR
DINNER TURNIPS AND CARROTS AND
BRUISED POTATOES AND FAT MUTTON
PIECES TO BE LADLED OUT IN THICK
PEPPERED FLOUR FATTENED SAUCE

2 numbrt tan fresh nalli is waiting
on nou cold nit husband

NUMBER TEN FRESH NELLY IS WAITING
ON YOU GOOD NIGHT HUSBAND

3 o berty and he god in your mind HELLO BERTIE ANY GOOD IN YOUR MIND

Table 3.1.: Samples of output-target pairs from Speech-to-Text-WaveNetoriginal experiment

As Table 3.1 shows, the overall performance of the system is very good,
with the exception of proper nouns, and words with a loose grapheme-
phoneme correspondence. This level of accuracy is achieved using hun-
dreds of hours of speech to train the network. TFarsDat, however, contains
only 17 hours of Farsi speech (approximately 17,500 sentences). Because
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this disparity is certain to seriously a�ect performance of the system,
the �rst experiment presented in the following chapter involves build-
ing a more comparable baseline. To do this, speech-to-Text-WaveNet
is retrained using only the VCTK Corpus, a subset of the data used for
the original experiment containing approximately 42,600 sentences. This
provides a more accurate point of reference for the second and third exper-
iments, which measure the performance of the Farsi ASR system trained
on TFarsDat.

3.4. Chapter summary

In this chapter, I described data and software to be used in three experi-
ments, each using CNNs for ASR. These experiments are presented in the
next chapter.
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4. Experiments

This chapter details three distinct experiments, all centred on CNN-based
ASR. The �rst experiment, described in Section 4.2, is a replication of
Speech-to-Text-WaveNet experiment on a subset of the original training
data, the VCTK Corpus. The purpose of this experiment is to build a
comparable baseline for the experiments to follow.
The second experiment, described in Section 4.3, implements the same

architecture on TFarsDat a corpus of Farsi telephone conversations, to
produce actual transcriptions of the audio �les. This experiment is con-
ducted to answer the �rst research question, concerning the identi�cation
of major challenges in implementing a deep-learning-based pipeline for
Farsi ASR.
The third experiment, described in Section 4.4, extends the DNN ap-

proach to a dialect normalisation task, in an attempt to answer the second
research question, which concerns the extent to which Speech-to-Text-
WaveNet has utility for a dialect normalisation task. In this experiment,
the network is trained to transcribe conversational speech �les with Ket-
abi/formal Farsi.

4.1. Experimental setup

All three experiments follow the same general procedure:
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Data preparation: sentence-level transcriptions are transformed into CSV
�les, and mapped into audio �les with start and end timestamps.

Preprocessing: audio �les and their labels are preprocessed before being
fed to the network. More speci�cally, �les are transformed into MFCC fea-
ture vectors, which are much smaller, but which contain the most import-
ant information of the audio signals. Alphabetical characters are trans-
posed into corresponding integers. The alphabet consists of all the graph-
emes/phonemes used in the dataset plus space.

Network training: the neural network is fed withMFCC feature vectors as
inputs and their corresponding labels as outputs. Network con�gurations
are identical to Speech-to-Text-WaveNet described in Section 3.2.1, and
�xed for all experiments. Training is run on two GeForce GTX TITAN X
GPUs.

Model selection: CTC loss on validation set is calculated every �ve epochs
to choose the best model. The model is then taken from the epoch at which
the lowest CTC loss occurs.

Speech Recognition: Audio �les in the test set are turned into MFCC
feature vectors and fed to the network to get predicted transcriptions,
using parameters in the chosen model.

Evaluation: the outputs of the system are evaluated using Label Error Rate
(LER) at the level of phoneme and word.
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4.2. Experiment 1: baseline

The �rst experiment aims to test performance of the DNN-based approach
for end-to-end speech recognition on smaller datasets, in order to build
an appropriate baseline for later experiments using TFarsDat. For this
task, a model is trained using the VCTK Corpus, an English read speech
corpus.

4.2.1. Dataset: VCTK Corpus

The VCTK Corpus contains a total number of 42,583 audio �les (one sen-
tence per audio �le), uttered by 109 speakers. The original corpus does
not include validation and test sets, but was divided for this experiment
into train, test, and validation subsets using the following procedure:
• Split the data into train and test sets with an 80/20 ratio
• Split the train set into train and validation sets, again with an 80/20
ratio

The size of each subset after dataset division is given in Table 4.1.
Train Validation Test

Speakers 72 17 20Sentences 27,728 6,500 8,355

Table 4.1.: VCTK Corpus subsets

4.2.2. Preprocessing

The transcribed training data consists of sentences written using normal
English spelling and punctuation rules. Before being fed into the neural
network, these labels are lowercased and stripped of punctuation marks,
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and indexed based on a dictionary that maps letters to integers. This step
also involves creating MFCC feature vectors from audio �les as described
in Section 3.2.2.

4.2.3. Training

For the �rst experiment, training was run until Epoch 20. Epoch 10, the
epoch with minimum CTC loss on the validation set, was selected. Table
4.2 shows CTC loss at each epoch on train, validation and test sets. The
decrease of CTC loss on the train set, coupled with increased CTC loss on
validation set after Epoch 10, suggests over�tting of the parameters on
training data after this epoch.

Epoch Train Validation Test
5 39.57 53.75 48.49
10 22.11 53.40 48.13
15 16.83 57.25 51.84
20 8.90 62.48 56.29

Table 4.2.: VCTK Corpus CTC loss

The evolution of the transcriptions given by the network at each epoch
on data from train and test sets is shown in Tables 4.3 and 4.4.

Epoch Sample A Sample B
5 he lals t be ecatins wel it wonet10 he loves to bie oecasions wel it wont15 he loves the big occpasions well it wont20 he wovsthe big repagions wellh it wonet

Target he loves the big occasions well it wont

Table 4.3.: Transcriptions of two samples from training data given by thenetwork at di�erent epochs
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Epoch Sample A Sample B
5 se rederis had ampel an wor

realis ic paslect
ois ar l pe ble hant

10 toeendher is now empee ang
ore realis tic pasment

is oe l cpeoln hant

15 swerander s naw empeemag
wore realis tic prasmet

is here l peoiln hant

20 sobenderis an thempep ll no
ir realiystic pasnect

its awl we le han

Target Surrender is not an
appealing or realistic
prospect

Is that what people want

Table 4.4.: Transcriptions of two samples from test data given by thenetwork at di�erent epochs

4.3. Experiment 2: DNN-based ASR for Farsi

This experiment tests the replicability of the current pipeline for ASR in
Farsi. The experiment is structurally identical to Experiment 1, but with
TFarsDat, rather than VCTK, used as training data.

4.3.1. Dataset: TFarsDat

The same data division procedure as in Experiment 1 (Section 4.2) was
used to divide TFarsDat into train, validation and test sets. The division
was done by �le. Accordingly, because �les contain variable numbers of
sentences, the ratio of sentences in each set di�ers fractionally from the
ratios in the previous experiment.
After dividing the dataset, the train set consisted of 39 audio �les, with

a total duration of about ten hours of speech. The test set consisted of
15 audio �les, with a total duration of about �ve hours of speech. The
validation set consisted of eight audio �les, with a total duration of about
145 minutes of speech. Information on number of sentences and speakers
in each subset is given in Table 4.5.
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Training Validation Test
Speakers 78 16 28Sentences 10, 875 2, 908 3, 687

Table 4.5.: TFarsDat Corpus subsets for Experiment 2

4.3.2. Data preparation

A key di�erence between the VCTK Corpus and TFarsDat is that VCTK tran-
scriptions are graphological, while TFarsDat transcriptions are phonetic.
To represent the phonemic inventory of Farsi, TFarsDat uses an IPA-like
schema, with punctuation symbols standing in for non-ASCII characters.
Punctuationmarks, therefore, do not mark clausal or sentence boundaries.
Because the corpus is made of telephony conversational speech, it is rich
in speaker overlap, incomplete sentences, backchannels, and the like. For
these reasons, sentence boundaries in the transcriptions are often not
clearly marked. This is a second important di�erence between VCTK and
TFarsDat.
For this experiment, the target labels were split at points of silence and

laughter, in order to (roughly) approximate sentence boundaries. After
being used to split the input data, silence and laughter labels are removed,
and skipped in the audio �les. However, other transcribed noises, such as
lip sounds and line noises, remain in the data, since test data also includes
these noises.

4.3.3. Preprocessing

In the preprocessing step, MFCC features were extracted with the same
details (frame rate = 25 milliseconds, frame step = 10 milliseconds) us-
ing LibROSA (see Section 3.2.2 for further information on the extraction
process). Since the default sampling rate in LibROSA is 16kHz, the audio
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�les were re-sampled from 11kHz to 16kHz, before feature extraction. The
labels are also converted into indices using a list of all phonemes in the
alphabet, plus whitespace.

4.3.4. Training

The network was trained until Epoch 25, and the epoch with minimum CTC
loss on the validation set, epoch 20, selected. The CTC loss at each epoch
on di�erent subsets is shown in Table 4.6. Results from this experiment
are presented in Section 4.5.

Epoch Train Validation Test
5 109.19 102.79 107.63
10 95.56 94.06 103.92
15 87.63 90.53 101.44
20 76.94 87.87 97.07
25 72.16 88.28 99.50

Table 4.6.: TFarsDat CTC loss for a normal transcription task

4.4. Experiment 3: dialect normalisation

The �nal experiment is an attempt to answer the second research question,
concerning the plausibility of transcribing conversational speech as formal
language in Farsi. The dataset used in this experiment, and its division
details are identical to Experiment 2 (see Section 4.3).

4.4.1. Data preparation and preprocessing

Data preparation for this experiment follows the same methodology as
in Experiment 2. The only di�erence is in the labels in the output layer
of the neural network. As explained before, the audio �les in TFarsDat
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are labelled with both Phonetic labels, transcriptions of uttered word, and
Phonemic labels, the Ketabi variants of the uttered words. In this ex-
periment Sound waves are mapped into the Phonemic labels, which are
equivalents of the spoken words in Formal Farsi, not words as they are
uttered.
Preprocessing follows the procedure described in Sections 4.3.2 and 4.3.3.

The number of sentences and speakers in each subset is identical to pre-
vious experience, shown in Table 4.5.

4.4.2. Training

Training is done until Epoch 35. The epoch with minimum CTC loss on the
validation set is chosen, which is epoch 30 for this experiment. The CTC
loss at each epoch for train, validation and test sets is shown in Table 4.7.

Epoch Train Validation Test
5 127.52 122.67 109.14
10 110.27 109.49 97.49
15 98.12 103.31 91.06
20 85.41 96.27 85.18
25 77.88 95.85 85.16
30 70.58 94.67 84.22
35 63.64 96.58 86.19

Table 4.7.: TFarsDat CTC loss for formal transcription of conversationalspeech

Results from this experiment are also presented in Section 4.5, alongside
results from the other two experiments.

4.5. Evaluation and results

The general di�culty of measuring performance of a speech recognition
system lies in the fact that the recognised word sequence can have a di�-
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erent length from the target word sequence. Each recognised word can
in turn be slightly di�erent from the target word as well, which makes
evaluation even more di�cult, especially in case of an end-to-end speech
recognition system, which doesn’t have a lexicon from which words can
be selected.
Graves et al. (2006) introduced Label Error rate (LER) as a measure for

evaluation of temporal classi�ers. For a classi�er h, LER is de�ned as the
mean normalised edit distance between its classi�cations and the targets
on test set S′, disjoint from training set S:

LER(h, |S′|) = 1

|S′|
∑

(x,z)∈S′

ED(h(x), z)

|z|
(4.1)

Where ED(p,q) is the minimum number of insertions, deletions and sub-
stitutions that would be required to turn p into q, |z| is the length of target
sequence z, and |S′| is the length of test set S′.
Label error rate can be de�ned according to the type of label in question

(word, phoneme, etc.). Word Error Rate (WER) and Phoneme Error Rate (PER)
are su�cient measures for the purpose of this thesis.
Table 4.8 shows the evaluation results for each experiment, with the

amount of training data used to train them. To calculate the edit distance
between two strings, the open-source Python library editdistance is used
(Tanaka, 2013). This library is an implementation of Levenshtein distance,
using the algorithm proposed by Hyyrö (2001).
As evident in Table 4.8, accuracy of the system relatively low in case of

Experiment 2 and Experiment 3: For Experiment 2, for example, only 98
per cent of words were correctly transcribed. Given an average sentence
length of 10, this means that only 0.2 words per spoken sentence are
correctly handled. WER gets even lower in Experiment 3. Possible reasons
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Experiment No. sentences PER WER
1 27, 728 35% 77%2 10, 875 73% 98%3 10, 875 78% 99%

Table 4.8.: Label Error Rate (LER) and Word Error Rate (WER) on di�erentexperiments

behind the low performance in these two experiments are provided in the
next chapter.

4.6. Chapter summary

In this chapter, I have detailed three experiments, each concerning deep
learning-approaches to ASR. The �rst experiment is a replication of the
system on an English dataset. Experiments 2 and 3 however, are conducted
with Farsi as the target language. The experiments are evaluated using
label error rate and the results are presented.
The next chapter combines a more detailed discussion of these results

with critical re�ection on shortcomings of the experiments, suggestions
for further research, and the implications of the thesis for ASR researchers,
especially in the context of Farsi and other under-resourced languages.
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5. Discussion, future work, and

conclusion

In the previous chapter, I described three CNN ASR experiments on English
and Farsi data. In this chapter, I discuss the �ndings of these experiments,
identifying shortcomings of the approach, implications of the work, and
potential areas for further research. A brief summary and conclusion fol-
lows.

5.1. Discussion

As Table 4.8 in the previous chapter shows, the experiment with the Eng-
lish corpus resulted in rather low label error rates for a system trained on
27,723 sentences. The gap betweenWER and PER in this experiment can be
understood as a result of the fact that target labels in this experiment are
written in standard-language English words and English has a rather loose
grapheme-phoneme correspondence. This means for the system to learn
the correct spellings of words, a much bigger training data is needed, with
multiple occurrences of words that do not have a one-to-one phoneme-
grapheme mapping. As an alternative, adding a language model to the
system could compensate for the lack of training data, and yield a lower
word error rate.
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This is a general problem for grapheme-based ASR, even when trained
on thousands of hours of speech. Hannun et al. (2014) report a WER of
16.0% for an RNN-based ASR system, trained on 2300 hours of speech (up
to three million utterances). They argue that errors tend to be phonetically
plausible renderings of English words, that mostly occur on words that
rarely or never appear in the training set.
Good examples of this problem area in the ASR process, even when

trained on big data, can be seen throughout Table 3.1: charrats and bruzed

potatoes (target: carrots and bruised potatoes). charrats is indeed a pre-
dictable rendering of carrots, based on the fact that word-initial char is of-
ten pronounced identically (character, charisma). The unstressed schwa in
potatoes, similarly, poses a di�cult issue, as it could be orthographically
represented with any vowel without an obvious change in pronunciation
for most English dialects (pitatoes, putatoes). Finally, for fatan sauce

(fattened sauce), we can see that a tendency to elide constant clusters in
spoken English (here, nds) is likely to lead to a pronunciation not dissimilar
to fatan sauce. Other challenges include idiosyncratic vowel orthography
(bruzed is perhaps more logical a spelling than bruised), and silent con-
sonant phonemes (leading to nit being predicted instead of night).
The �rst experiment with the Farsi dataset, also a conventional tran-

scription task, brought about higher error rates when tested on unseen
data. The outputs of this system are generally not comprehensible. At
the same time, they do contain strings of characters that are identical to
words in Farsi, without any changes, or with a small edit distance. A
close study of the outputs of the system in Experiments 2 and 3 shows
a relationship between the instances of correctly labelled words with the
most frequent words in the training data. Some of the observed instances
are xeyli (English: very), .om/ (the plural, formal, singular second person
pronoun), xub (good, or well), masalan (for example), and xod/ (god). Each
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of these well-predicted words are among the top 50 most frequent words
in the train set (see Table A4 in the Appendix). This relationship between
frequency of words in training data and correct labelling points toward
a need for higher quantities of training data, since the most accurately
transcribed tokens are the ones observed many times in the train set.
The �nal experiment, also using the Farsi dataset, was more explor-

atory. In this experiment, the goal was to get the recogniser to tran-
scribe conversational speech with registerial and dialectal di�erences, in
a certain mode of language (namely, Ketabi Farsi), which is the standard
form of the o�cial language of Iran as used in newspapers. The �nal
result of this experiment is very close to that of the normal transcrip-
tion task (Experiment 2). The resemblance of the results of these two
experiments implies the plausability of transcribing conversational Farsi
in Ketabi Farsi using the proposed method. If the results of Experiment 2
were to be improved by utilisation of a larger and/or higher-quality dataset
in conversational Farsi, the attempt to transcribe audio �les in Ketabi Farsi
would undoubtedly have been more successful too.

5.1.1. Limitations of the experiments

With a machine learning algorithm at the core of the methodology, the
biggest limitation during the course of this project were issues related to
available training data. Recognising features and learning to classify them
automatically requires very large amounts of high-quality training mater-
ial, even for the simplest of problems. Entering the domain of speech, the
deep learning algorithm is dealing with rather complex data inputs, and
this complexity can only be compensated for with abundance of data.
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Training data: quality and quantity

Data limitations in the case of this study can be addressed both in terms
of quality and quantity.
VCTK and TFarsDat are two datasets with di�erent natures: one is a read

speech corpus and the other is a telephony spontaneous speech corpus.
The read speech data is inherently cleaner and much less noisy than the
telephony data. The noise in the telephony dataset includes, but is not
limited to, line and background noise. The ASR system used in this study
has not been designed to take the complications of telephony speech into
account. Apart from line noises and labelled noises such as laughter and
sounds of hesitation, the problem of speaker overlap, where two or more
speakers are speaking at the same time, also presents a serious challenge
to the system. These overlaps are transcribed with what both speakers
are saying at the same time, and happen quite often during a telephone
conversation, creating confusion for the system.
Regarding quantity of training data, it is important to note that TFarsDat

is a relatively small dataset, even in comparison with the VCTK Corpus.
Most experiments on noise robust speech recognition rely on hundreds of
hours of speech, while TFarsDat contains only 17 hours of speech (Sainath
et al., 2013; Qian and Woodland, 2016; Maas et al., 2015). The comparison
between the English system trained on a very large dataset and a subset
thereof (Tables 3.1 and 4.4 ) shows clearly the relationship between data
quantity and system performance.

Input representation

Even though MFCC feature vectors have been commonly used in ASR sys-
tems, they still have some limitations, arising from the ways in which
they are generated from the input audio. As explained by O’Shaughnessy
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(2008), aside from c0 and c1, cepstral coe�cients do not have a meaningful
interpretation. c0 is the power over all frequency bands and c1 is the
balance between low and high frequency components within the signal
frame. Other cepstral coe�cients, on the other hand, contain the detail
of the spectrum to discriminate the sounds, without a clear interpreta-
tion. How MFCC features react to accents or noise, is therefore unknown
(O’Shaughnessy, 2008). Using MFCCs as the numerical representation of
sound waves reduces the amount of computational power required for
further processing. However, it does not accurately depict all features of
the sound waves, instead only approximating these features. With fewer
restrictions on the amount of computational power, all processing could
be done on raw sound waves, resulting in more accurate predictions.
Another challenge related to input representation is the problem of sen-

tence boundaries in TFarsDat. Earlier, it was explained that punctuation
marks are used in target labels to represent phonemes, and thus they do
not function to mark clausal and sentence boundaries. This has led to
approximation of sentences using laughter and silence labels. Since pros-
odic features such as stress and intonation manifested on speech waves are
most meaningful at the level of sentence, having wrong sentence bound-
aries could be another source of confusion for the system. The extent to
which these inaccuracies impact the performance of the system, should be
further studied.

5.2. Future work

Based on experiment results, it is sensible to suggest that a Farsi dataset
of the size and quality of the VCTK Corpus would produce a model of
equivalent accuracy to that of Experiment 1. While the resources needed
to produce such a corpus are not insigni�cant, the experiments show that
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the approach is indeed viable. Moreover, it can easily be reimplemented
for new languages, given enough resources.
In terms of data quality, it is apparent that issues such as line and

background noise, speaker overlap, and non-lexical content (e.g. back-
channelling and non-verbal phatic communication) negatively a�ect the
performance of the system. The extent to which these kinds of issues can
be �xed by employing speech denoising techniques and preprocessing is
also worthy of further investigation.
Building a speci�c-purpose speech corpus for a dialect normalisation

task is the ideal scenario for getting better results using the current pipeline.
This corpus would contain a big number of sentences uttered by speakers
of di�erent Farsi dialects, recorded in o�ce environment, and transcribed
in Ketabi Farsi.
Aside from data quality and quantity, the key di�erence between the

English and Farsi tasks is that the speech recognition task on English data
is grapheme-based, while for Farsi, it is phoneme-based. Future research
would do well to compare and contrast the relationship between these two
output targets and performance of the CNN.
All experiments in this thesis were performed using �xed network con-

�gurations. Future research would also bene�t from modifying hyper-
parameters such as �lter size, number of layers, and dilation coe�cients,
to determine which con�gurations led to better overall performance.

5.3. Contributions of this thesis

This thesis presents the �rst attempt at a deep learning-based ASR pipeline
for Farsi. In this approach, convolutional neural networks and state-of-
the-art ASR techniques are applied, in order to normalise and standardise
dialectal and registerial di�erences in transcriptions of spoken language.
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Despite the fact that the performance of the system in the experiments
is far below what would be required for a useful downstream application,
analysis of the system output demonstrates that the likely cause of the
inaccuracy is the quality and quantity of the available data. Regardless of
the accuracy of the system presented here, the experiments nonetheless
demonstrate the ability of deep learning pipelines to be applied to arbitrary
languages. At the same time, however, the approach taken here highlights
the centrality of large amounts of high-quality data for training of the
neural network. While the development of such resources may pose a new
problem for under-resourced languages, it is sensible to suggest that it
is more advantageous than development of traditional language-speci�c
systems.

5.4. Summary and conclusion

In this thesis I presented a convolutional neural network architecture that
takes MFCC feature vectors as input and tries to maximise the probability
of target labels in its output layer, using CTC loss as its objective function.
The TensorFlow implementation of this system is applied on two datasets,
with three experiments conducted in order to test the replicability of this
method for audio transcription in two di�erent languages: English and
Farsi.
Performance of the systems is low in general, and not satisfactory for

immediate adoption in a downstream application. However, because the
major cause of this result is the size and quality of the available training
data, it appears that the methodology itself may be viable for Farsi ASR
tasks, provided work is undertaken to build larger and higher-quality
training datasets. More broadly, the language-agnostic nature of this
work�ow means that high-quality ASR systems could be developed for
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a number of under-resourced languages, with the only prerequisite being
the production of a sizable collection of high-quality audio recordings and
accompanying graphological/phonemic representations.

50



Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., et al. (2016). Tensor�ow: A System
for Large-Scale Machine Learning. In OSDI, volume 16, pages 265–283.

Abdel-Hamid, O., Mohamed, A.-r., Jiang, H., Deng, L., Penn, G., and
Yu, D. (2014). Convolutional neural networks for speech recog-
nition. IEEE/ACM Transactions on audio, speech, and language processing,
22(10):1533–1545.

Abdel-Hamid, O., Mohamed, A.-r., Jiang, H., and Penn, G. (2012). Apply-
ing convolutional neural networks concepts to hybrid NN-HMM model
for speech recognition. In 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4277–4280. IEEE.

Atal, B. S. and Hanauer, S. L. (1971). Speech analysis and synthesis by
linear prediction of the speech wave. The journal of the acoustical society
of America, 50(2B):637–655.

Babaali, B. (2004). Incorporating pruning techniques for improving the per-
formance of an HMM-based continuous speech recognizer. PhD thesis, Ms
thesis, Sharif University of Technology.

Babaali, B. and Sameti, H. (2004). The Sharif speaker-independent
large vocabulary speech recognition system. In The 2nd Workshop on
Information Technology & Its Disciplines (WITID 2004), pages 24–26.

51



Besacier, L., Barnard, E., Karpov, A., and Schultz, T. (2014). Automatic
speech recognition for under-resourced languages: A survey. Speech
Communication, 56:85–100.

Bijankhan, M., Sheykhzadegan, J., Roohani, M. R., Zarrintare, R.,
Ghasemi, S. Z., and Ghasedi, M. E. (2003). TFarsDat-the Telephone Farsi
speech Database. In Eighth European Conference on Speech Communication
and Technology.

Bourlard, H. and Morgan, N. (1993). Continuous speech recognition by
connectionist statistical methods. IEEE Transactions on Neural Networks,
4(6):893–909.

Chinn, M. D. and Fairlie, R. W. (2007). The determinants of the global
digital divide: a cross-country analysis of computer and internet pen-
etration. Oxford Economic Papers, 59(1):16–44.

Davis, K., Biddulph, R., and Balashek, S. (1952). Automatic recognition of
spoken digits. The Journal of the Acoustical Society of America, 24(6):637–
642.

Davis, S. and Mermelstein, P. (1980). Comparison of parametric rep-
resentations for monosyllabic word recognition in continuously spoken
sentences. IEEE transactions on acoustics, speech, and signal processing,
28(4):357–366.

Deng, L. and O’Shaughnessy, D. (2003). Speech processing: a dynamic and
optimization-oriented approach. CRC Press.

Ferguson, J. et al. (1980). HiddenMarkov analysis: an introduction. Hidden
Markov Models for Speech, 1:8–15.

52



Forgie, J. W. and Forgie, C. D. (1959). Results obtained from a vowel
recognition computer program. The Journal of the Acoustical Society of

America, 31(11):1480–1489.
Gordon, R. G., Grimes, B. F., et al. (2005). Ethnologue: Languages of the
world, volume 15. SIL International Dallas, TX.

Graves, A. (2012a). Sequence transduction with recurrent neural networks.
arXiv preprint arXiv:1211.3711.

Graves, A. (2012b). Supervised sequence labelling. In Supervised Sequence
Labelling with Recurrent Neural Networks, pages 5–13. Springer.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). Con-
nectionist temporal classi�cation: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the 23rd international
conference on Machine learning, pages 369–376. ACM.

Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recognition
with recurrent neural networks. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pages 1764–1772.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Pren-
ger, R., Satheesh, S., Sengupta, S., Coates, A., et al. (2014). Deep speech:
Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778.

Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis of
speech. the Journal of the Acoustical Society of America, 87(4):1738–1752.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior,
A., Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural

53



networks for acoustic modeling in speech recognition: The shared views
of four research groups. IEEE Signal Processing Magazine, 29(6):82–97.

Hyyrö, H. (2001). Explaining and extending the bit-parallel approximate
string matching algorithm of Myers. Technical report, Technical Report
A-2001-10, Dept. of Computer and Information Sciences, University of
Tampere, Tampere, Finland.

Itakura, F. (1970). A statistical method for estimation of speech spectral
density and formant frequency. IEICE Trans., 53(1):35–42.

Jelinek, F., Bahl, L., and Mercer, R. (1975). Design of a linguistic statistical
decoder for the recognition of continuous speech. IEEE Transactions on
Information Theory, 21(3):250–256.

Juang, B.-H. (1985). Maximum-likelihood estimation for mixture mul-
tivariate stochastic observations of Markov chains. AT&T technical

journal, 64(6):1235–1249.
Juang, B.-H. and Rabiner, L. R. (2005). Automatic speech recognition–a
brief history of the technology development. Georgia Institute of Techno-
logy. AtlantaRutgersUniversity and theUniversity of California. SantaBarbara,
1:67.

Kim, N. and Park, K. (2016). Speech-to-Text-WaveNet. GitHub repository.
Available at: https://github.com/buriburisuri/speech-to-text-wavenet.

Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D. (1997). Face
recognition: A convolutional neural-network approach. IEEE transactions
on neural networks, 8(1):98–113.

LeCun, Y., Huang, F. J., and Bottou, L. (2004). Learning methods for
generic object recognition with invariance to pose and lighting. In

54

https://github.com/buriburisuri/speech-to-text-wavenet


Computer Vision andPattern Recognition, 2004. CVPR2004. Proceedings of the

2004 IEEE Computer Society Conference on, volume 2, pages II–104. IEEE.
Lee, C.-H., Rabiner, L. R., Pieraccini, R., and Wilpon, J. G. (1990). Acoustic
modeling for large vocabulary speech recognition. Computer Speech &
Language, 4(2):127–165.

Levinson, S. E., Rabiner, L. R., and Sondhi, M. M. (1983). An introduction
to the application of the theory of probabilistic functions of a Markov
process to automatic speech recognition. TheBell SystemTechnical Journal,
62(4):1035–1074.

Lippmann, R. P. (1988). Neural network classi�ers for speech recognition.
Lincoln Laboratory Journal, 1:107–124.

Lippmann, R. P. (1989). Review of neural networks for speech recognition.
Neural computation, 1(1):1–38.

Maas, A., Xie, Z., Jurafsky, D., and Ng, A. (2015). Lexicon-free conversa-
tional speech recognition with neural networks. In Proceedings of the 2015
Conference of theNorth American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 345–354.
McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133.

McFee, B., Ra�el, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E.,
and Nieto, O. (2015). librosa: Audio and music signal analysis in python.
In Proceedings of the 14th python in science conference, pages 18–25.

Megerdoomian, K. (2006). Extending a Persian morphological analyzer
to blogs. In Proceedings of the Second Workshop on Persian Language and
Computers. Citeseer.

55



Meier, P. and Muller, S. (1998). IDEA: International dialects of English
archive. Accessed May, 17:2005.

Olson, H. F. and Belar, H. (1956). Phonetic typewriter. The Journal of the
Acoustical Society of America, 28(6):1072–1081.

O’Shaughnessy, D. (2008). Automatic speech recognition: History, meth-
ods and challenges. Pattern Recognition, 41(10):2965–2979.

Palaz, D., Collobert, R., et al. (2015). Analysis of CNN-based speech
recognition system using raw speech as input. Technical report, Idiap.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Librispeech:
an ASR corpus based on public domain audio books. In Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International Conference on, pages
5206–5210. IEEE.

Pearce, D. and Picone, J. (2002). Aurora working group: DSR front end
LVCSR evaluation au/384/02. Inst. for Signal & Inform. Process., Mississippi
State Univ., Tech. Rep.

Qian, Y. and Woodland, P. C. (2016). Very deep convolutional neural
networks for robust speech recognition. In Spoken Language Technology
Workshop (SLT), 2016 IEEE, pages 481–488. IEEE.

Rousseau, A., Deléglise, P., and Esteve, Y. (2012). TED-LIUM: an Auto-
matic Speech Recognition dedicated corpus. In LREC, pages 125–129.

Sainath, T. N., Kingsbury, B., Saon, G., Soltau, H., Mohamed, A.-r., Dahl,
G., and Ramabhadran, B. (2015). Deep convolutional neural networks
for large-scale speech tasks. Neural Networks, 64:39–48.

Sainath, T. N., Mohamed, A.-r., Kingsbury, B., and Ramabhadran, B.
(2013). Deep convolutional neural networks for LVCSR. In Acoustics,

56



Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on,
pages 8614–8618. IEEE.

Sakai, T. and Doshita, S. (1962). The Phonetic Typewriter. In IFIP Congress,
volume 445, page 449.

Sameti, H., Veisi, H., Bahrani, M., Babaali, B., and Hosseinzadeh, K.
(2011). A large vocabulary continuous speech recognition system for
Persian language. EURASIP Journal on Audio, Speech, and Music Processing,
2011(1):6.

Sheikhan, M., Tebyani, M., and Lot�zad, M. (1997). Continuous speech
recognition and syntactic processing in Iranian Farsi language. Interna-
tional Journal of Speech Technology, 1(2):135–141.

Song, W. and Cai, J. (2015). End-to-end deep neural network for automatic
speech recognition.

Tanaka, H. (2013). editdistance. GitHub repository. Available at: https:

//github.com/aflc/editdistance.
van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves,
A., Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016). Wavenet:
A generative model for raw audio. CoRR abs/1609.03499.

Veaux, C., Yamagishi, J., MacDonald, K., et al. (2017). CSTR VCTK Corpus:
English Multi-speaker Corpus for CSTR Voice Cloning Toolkit.

Velichko, V. and Zagoruyko, N. (1970). Automatic recognition of 200
words. International Journal of Man-Machine Studies, 2(3):223–234.

Weinberger, S. H. and Kunath, S. A. (2011). The Speech Accent Archive: to-
wards a typology of English accents. Language and Computers, 73(1):265–
281.

57

https://github.com/aflc/editdistance
https://github.com/aflc/editdistance


Wilpon, J. G., Rabiner, L. R., Lee, C.-H., and Goldman, E. (1990). Auto-
matic recognition of keywords in unconstrained speech using hidden
Markov models. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 38(11):1870–1878.

58



Appendices

59



Table A1.: Farsi alphabet with IPA symbols, orthographic symbols, andphonetic descriptions
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label Description
i hight front vowele mid front vowela low front vowelu high back vowelo mid back vowel/ low back vowelb voiced bilabial plosivep unvoiced bilabial plosived voiced dental plosivet unvoiced dental plosive; voiced palatal plosiveg voiced velar plosivec unvoiced palatal plosivek unvoiced velar plosiveq voiced uvular plosive
] glottal stop’ voiced alveopalatal a�ricate, unvoiced alveopalatal a�ricatev voiced labiodental fricativef unvoiced labiodental fricativez voiced alveolar fricatives unvoiced alveolar fricative
[ voiced alveopalatal fricative. unvoiced alveopalatal fricativex unvoiced uvular fricativeh unvoiced glottal fricativem bilabial nasaln alveolar nasalr alveolar trilll alveolar lateraly palatal glide

Table A2.: TFarsDat characters
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Paralinguistic label Description
ls lip soundbr breath sounduh pausecog coughbn background noisehes hesitation soundns non-speech soundln line noisedef incomplete wordde� unclear wordsil silencelaugh laughter

Table A3.: Di�erent types of noise in TFarsDat Corpus
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Rank Token Frequency Rank Token Frequency
1 ke 5,121 51 nemid/nam 368
2 ]in 3,298 52 mikonad 358
3 va 3,122 53 mikonam 355
4 r/ 2,799 54 .ode 353
5 ham 2,676 55 hame 340
6 ]ast 2,670 56 d/rand 337
7 be 2,362 57 ’iz 310
8 yek 2,330 58 fekr 307
9 bale 1,958 59 do 307
10 ]az 1,957 60 tu+e 302
11 masalan 1,710 61 be.avad 300
12 m/ 1,528 62 nist 291
13 man 1,418 63 d/.te 281
14 xob 1,155 64 bi.tar 265
15 digar 1,128 65 ’on 258
16 xeyli 1,119 66 ham/n 249
17 .om/ 1,113 67 nazar+e 245
18 tu 1,106 68 ’izi 239
19 h/l/ 1,076 69 yeki 239
20 ]/n 1,024 70 ]/dam 237
21 dar 976 71 ]/re 230
22 ]inh/ 944 72 bude 230
23 b/ 902 73 d/rim 222
24 ]al]/n 742 74 ]/n,/ 220
25 dorost 693 75 b/z 218
26 ’e 668 76 xode. 218
27 vali 648 77 s/l 215
28 b/.ad 626 78 ziy/d 204
29 mi.avad 587 79 konand 200
30 ya]ni 573 80 faqat 200
31 y/ 567 81 ]/nh/ 199
32 d/rad 542 82 xod+e 198
33 bar/ye 536 83 vaqti 198
34 ]agar 535 84 miguyand 198
35 ba]d 524 85 ]/q/ 198
36 hast 519 86 mi]/yad 193
37 b/yad 519 87 konad 189
38 bud 515 88 miguyam 189
39 nm 515 89 beharh/l 185
40 na 491 90 ]albatte 180
41 t/ 488 91 ]in,/ 179
42 hamin 480 92 tehr/n 175
43 ]aslan 475 93 ./yad 174
44 k/r 450 94 ]en./]all/h 172
45 xub 433 95 xod/ 170
46 hastand 422 96 mesl+e 167
47 v/qe]an 418 97 mardom 167
48 be]estel/h 406 98 ba”eh/ 165
49 har 389 99 karde 164
50 mikonand 379 100 ’and 163

Table A4.: Most common tokens in TFassDat training data
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