EMG-BASED SILENT SPEECH INTERFACES

Insights into the Challenge of Predicting Speech
from Articulatory Muscle Activity

Basque CarkerforLanguans Technolosy

Doctoral thesis

Inge Salomons

2024

yyyyyyyyyyyyyyyyyy

X HiTZ
Universidad  Euskal Herriko Hizkuntza Teknologiako Zentroa
del Pais Vasco  Unibertsitatea Basque Center for Language Technology



Supervisors
Prof. dr. Inmaculada Herndez Rioja
Dr. Eva Navas Cordén

© Inge Salomons, Bilbao; September 30, 2024.

Cover illustration by David Ferndndez Rementeria for Itelazpi (2023).



Abstract

This doctoral thesis is performed as part of the ReSSInt project, which
aims to restore speech for Spanish alaryngeal speakers. An alaryngeal
speaker has no larynx, which is an element of the speech production
system containing the essential vocal cords. Using machine-learning-
based technology, the main goal of the project is to develop a silent
speech interface (SSI) based on non-acoustic biosignals. Biosignals are
the product of biological processes during speech production, such as
neural, muscular, or pulmonary activity. An SSI allows users to articu-
late without sound (silent speech) while a computer model interprets
the biosignals related to the intended speech. The model is created
using a large database of parallel speech signals and biosignals. To
capture articulatory muscle activity, a technique called electromyogra-
phy (EMGQG) is used, which measures the electrical pulses in activated
muscles.

The topic of this thesis is EMG-based SSIs and focuses on the devel-
opment of the first Spanish EMG-speech database, as well as research
challenges associated with using this data for SSI development. The
main contribution is the presentation of the ReSSInt-EMG database
and its collection and validation procedure. Furthermore, using the
data from this database, it aims to assess the effect of muscle activity
variation between speakers, the impact of the absence of vocal cord and
tongue information, and the differences in muscle activity between au-
dible, silent, and alaryngeal speech. The results can be used to develop
and improve an EMG-based SSI for Spanish alaryngeal speakers.
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Introduction

To speak is to be able to express one’s feelings, emotions, desires, com-
mands, and frustrations. It is a complex system involving our brain,
lungs, vocal tract, and muscles, and yet most of us take it for granted.
Try to imagine not having the act of speech available to you, and having
to rely on alternative communication methods instead. What would
you want this alternative method to comply with? Let me answer that
for you. First, you would like others to understand you without much
effort. Secondly, you would like to be able to convey the emotions that
are attached to the message. Thirdly, you would like the conversation
to go smoothly, so a fast processing time is essential. And lastly, you
would not want to spend years learning how to use this method. And
as a bonus, how nice would it be if you could communicate with the
sound of your (old) voice?

This thesis focuses on a technological approach that has the poten-
tial to comply with all these requirements.

In the rest of this chapter, you will read more about the research
goal and questions of this thesis, and how it is structured.



Chapter 1. Introduction

1.1 Research goal and questions
This thesis is performed as part of the ReSSInt project [1, 2], which
aims to restore speech for Spanish people who have been deprived
of the ability to speak. More specifically, the target group consists of
alaryngeal speakers, who are people whose larynx has been removed.
The larynx is a part of the speech production system that contains the
vocal cords, which are essential for typical speech production. The
main goal of the project is to develop a silent speech interface (SSI)
based on non-acoustic biosignals using machine-learning-based tech-
nology. Biosignals are the product of biological processes during speech
production and can be acquired from the brain, the tongue, or the mus-
cles. Silent speech refers to the act of articulating as if a person were
speaking, but without producing any sound. Therefore, biosignals can
correspond to either silent (non-acoustic) or audible (acoustic) speech.
An SSl is developed using a large database of parallel (silent or audible)
speech signals and biosignals. It allows users to communicate without
making any sound because a computer model interprets the biosignals
related to the intended speech and outputs the predicted speech. This
thesis focuses on predicting speech from articulatory muscle activity,
and the challenges that are associated with it. To acquire biosignals
from the muscles used to articulate, a method called electromyography
(EMG) is used. This method measures the electricity in muscles using
electrodes attached to the skin and the resulting signals represent the
level of muscle activity.

This thesis aims to fill the research gap specifically related to EMG-
based SSIs for Spanish alaryngeal speakers, by answering the following
research questions:

1. What are the most important advances made in EMG-based SSI
research, and in which areas is more research needed?

2. Which superficial muscles of the face and neck are involved in
speech production?

3. What is the optimal acquisition setup and procedure for the de-
velopment of the database?



4. What is the effect of variation in EMG signals between different
speakers and sessions?

5. What is the effect of lack of information from the vocal cords and
tongue, two important elements of speech production?

6. How does articulatory muscle activity of audible versus silent
speech compare?

7. How does articulatory muscle activity of a typical versus an ala-
ryngeal speaker compare?

1.2 Thesis guide

This thesis consists of four parts, each containing at least one chapter.

Part I: Introduction and Background.
After this introductory chapter, a background chapter follows, which
provides detailed background information on the most important top-
ics in this thesis, and an overview of state-of-the-art research in this field.

Part II: Data Collection.
This part focuses on the data collection and contains three chapters.
Chapter 3 describes a pilot study to find the optimal way to acquire
EMBG signals from the articulatory muscles. Chapter 4 describes the
data collection procedure and the resulting database. Chapter 5 vali-
dates the acquisition setup of the database.

Part I1I: Research Challenges.
This part focuses on understanding the depth of the challenges that
arise with this research topic and also contains three chapters. Chapter 6
shows the effect of variability between speakers, and sessions of the
same speaker. Chapter 7 shows the effect of lack of information from
the vocal cords and tongue. Chapter 8 shows the effect of differences in
muscle use between speakers and speech modes.
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Part IV: Conclusion.
This part consists of one chapter, which provides a general discussion
and conclusion.

Furthermore, after the bibliography, a list of abbreviations, a sum-
mary in English, Spanish, and Dutch, and a list of contributions can be
found.



Background

This chapter aims to provide a wide theoretical background and litera-
ture overview so that the reader can read this thesis without knowledge
of the topic of research presented here. First, we explain the typical
process of human speech production, the changes in this process after
the larynx with the vocal cords has been surgically removed, and the
consequences of this procedure. Then, we provide a technical descrip-
tion of SSIs, and the method of EMG. Lastly, we present an overview
of the history and recent advances in the research area of predicting
speech from muscle movements. When applicable, a chapter has a more
detailed topic-specific literature overview as well.



Chapter 2. Background

2.1 Speech production

The speech production system (Figure 2.1) consists of the sub-glottal
part (the lungs and trachea), the vocal tract (the pharynx, the larynx with
the vocal cords, and the oral cavity), and the nasal tract (the soft palate
and the nasal cavity). In typical circumstances, speech is produced by
pushing air from the lungs, through the vocal cords, to the mouth and
nasal cavity. The vocal cords are responsible for the voicing of sounds.
The vibration of the vocal cords results in a periodic interruption of the
airflow, creating voiced sounds such as vowels. In unvoiced sounds,
there is no vibration of the vocal cords, meaning that the airflow is free.
The different sounds are created by moving the lips, tongue, and jaw
(the articulators) uniquely, and releasing the air accordingly. To move
the articulators, the speaker needs to activate the muscles in the face
and neck.

Figure 2.1: The speech production system. Copy right: Theresa Knott, CC
BY-SA 2.5 https:/ /creativecommons.org/licenses/by-sa /2.5, via Wikimedia
Commons


https://creativecommons.org/licenses/by-sa/2.5

The facial muscles that are related to speech are those that control
the jaw, lips, and tongue. We call them speech or articulatory muscles
in this thesis, but these muscles are also used for facial expressions,
laughing, and eating. The most important muscle for speech production
is the tongue. Figure 2.2 shows an image of the muscles of the face and
Figure 2.3 shows two images of the muscles of the neck.
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Figure 2.2: Muscles of the face [3].
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Figure 2.3: Muscles of the neck [3].

2.2 Alaryngeal speech

Typical speech as described in the previous section is also referred to as
laryngeal speech, since the larynx and especially the vocal cords, play an
important role. If a person has undergone a larynx amputation surgery
(laryngectomy), usually because of laryngeal cancer, the production of
laryngeal speech is no longer possible. This is due to the absence of the
vocal cords and the separation of the airway from the nasal cavity and
the mouth. In order to breathe, these individuals receive a stoma in the
throat, directly attached to the trachea. Figure 2.4 shows the difference
in speech systems before and after a laryngectomy.

After surgery, these alaryngeal speakers lose the ability to produce
speech naturally and rely on alternative communication methods. There
are three common methods to produce alaryngeal speech [4]. The first
is using a voice prosthesis or tracheo-esophageal puncture. An opening
between the trachea and esophagus allows the speaker to push air from
the lungs through this opening up into the mouth when covering the
stoma with a finger, called tracheo-esophageal speech. Although this is
the most common method, it occasionally results in speaking difficulty
because the pharynx goes into spasm or there is swelling of the opening
area. The second method is using an electrolarynx, which is a battery-
operated machine that creates vibrations that normally the vocal cords

10
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Figure 2.4: Figures showing the airflow before and after a total laryngec-
tomy. Copied from Cancer Research UK (https://www.cancerresearchuk.org/
about-cancer/laryngeal-cancer/living-with /stoma/about, last accessed on
25/09/2024).

do, resulting in electro-laryngeal speech. Because it makes some noise,
it is particularly used if a voice prosthesis is not (yet) an option. The
last type of alaryngeal speech is esophageal speech. A speaker who
produces speech this way pumps air from the mouth into the esophagus
and the stomach, and when releasing this air, a vibrating tissue around
the entrance of the esophagus simulates the vibration of the vocal
cords. In general, each of these alaryngeal speaking methods has some
limitations, of which the most prominent are that they are difficult to
learn, or that the resulting voice can be difficult to understand by others
[4-7].

2.3 Silent speech interfaces

Technological approaches to restore speech for alaryngeal speakers
include personalized text-to-speech (TTS) systems [8], voice conversion
[9, 10], bionic voices [11, 12], lean-Al approaches [13], and SSIs [14],
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among others [15].

An SSI uses non-acoustic biosignals to restore speech from non-
verbal communication [16-18]. Biosignals are the product of chemical,
electrical, physical, and biological processes during speech production,
such as neural activity, articulator motor control, muscle activity, artic-
ulatory gestures, vibration of the vocal cords, and pulmonary activity.
They are insensitive to environmental noise and independent of the
acoustic speech signal.

There are two SSI approaches:

¢ Silent speech-to-text, where an automatic speech recognition (ASR)
model decodes speech from features extracted from biosignals
and outputs text, in combination with a TTS model that synthe-
sizes speech from this text.

¢ Direct speech synthesis, where audible speech is generated di-
rectly from features extracted from biosignals, modeling the rela-
tionship between biosignals and the acoustic waveform.

Sensing techniques are used to retrieve the different types of biosig-
nals related to speech production. SSIs can be based on biosignals
retrieved from vocal tract imaging (i.e. [19]) to capture vocal tract move-
ments, permanent magnet articulography (PMA) to capture speech
articular movements (i.e. [20, 21]), EMG to capture the facial muscles’
electrical activity (see Section 2.6), and electroencephalogram (EEG), to
capture the neural activity in brain regions used for speech (i.e. [22-24]).
Depending on the type of speech disorder, one method might be better
suited than the other. We have selected EMG (Section 2.4), because the
muscles and ability to articulate of alaryngeal speakers are still intact,
and it is the least invasive of all methods.

The application area for the SSIs in the studies listed above is
meant as a communication aid to provide a voice to people with speech
disabilities. However, these interfaces can also be used in situations
where private communications are required [25, 26] or in situations
where audible speech would be masked by environmental noise [27].

12



2.4 Electromyography

EMG is a sensing technique used to measure and acquire muscle activity
[28-31]. The literal meaning of EMG is "recording (graphy) of electricity
(electro) of the muscle (myo)".

The muscles responsible for speech are skeletal muscles, meaning
they are attached to bones via tendons in the tendon zone and are
controlled voluntarily by the nervous system. The process required to
move a muscle is as follows. First, a signal is generated by the motor
cortex of the brain, which travels through a network of nerves to reach
the muscle. At the end of this network are motor units consisting
of motor nerve fibers, known as the innervation zone. Each muscle
fiber within a motor unit has its own innervation. The power of muscle
contraction depends on how many motor units are activated, with larger
muscles typically requiring more motor units. The frequency of nervous
impulses determines the extent of muscle contraction. The biological
process of opening sodium and potassium channels in muscle cells,
known as the motor unit action potential (MUAP), creates a myoelectric
signal that can be detected and recorded by an EMG amplifier through
electrodes.

Two types of electrodes can be used: those inserted in the muscle
(invasive EMG; iEMG), and those attached to the skin (surface EMG;
sEMG). Due to its non-invasive nature, we have selected SEMG, from
now on simplified as EMG. In general, the EMG signal acquisition
process consists of four steps: signal collection, signal amplification,
signal filtering, and analog-to-digital conversion [31].

There are two ways to acquire EMG signals, namely in a monopolar
or differential configuration. For monopolar acquisition, a reference
electrode is required, which is placed in a location where no activity
related to the muscle activity is expected, for example on the earlobe.
Then the signal from the reference electrode is subtracted from the
raw signal from the single monopolar electrode on the target muscle.
Differential acquisition means that the difference between the signals
acquired in two points is measured. This can be done using bipolar
electrodes (made up of a pair of single electrodes) or an array of at

13
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least two electrodes. Two measuring points form one channel, whether
that is between two bipolar electrodes, between the reference and a
monopolar electrode, or between two electrodes in an array [31].

EMG recording recommendations by De Luca et al. [28] state
that an electrode should be placed between an innervation zone and
the tendon zone, or between two innervation zones, and along the
longitudinal midline of the muscle. Furthermore, they suggest putting
it in the middle of the muscle, and not on the outer edges. This is to
avoid cross-talk as much as possible, which refers to the interference of
muscle activity from surrounding or underlying muscles in the signal
of the target muscle. These suggestions are in line with a study by
Young et al. [32], in which they found that electrode shift increased
the classification error, but that this error was lower for longitudinal
channels compared to transverse channels. Secondly, the direction of
electrode shift was a significant factor, with perpendicular shift resulting
in higher error than parallel shift. Lastly, they found that the largest
electrode (3x3 cm) performed worse in general, but was less sensitive
to errors when shifted perpendicularly compared to smaller electrodes
(2x2 and 1x1 cm).

The amplitude of an EMG signal can range from 0 to 10 millivolts
(mV) [28]. EMG signals can be affected by many factors: the impedance
of body skin, subcutaneous tissue layers, spread from the innervation
zone, cross-talk from neighboring muscles, environmental noise, electri-
cal power wires, and electrode size and position. The usable energy of
an EMG signal is limited to the 0-500 Hertz (Hz) frequency range, with
the dominant energy occurring between 50-150 Hz. Possible sources
of noise that can be reflected in the signal are radiation from power
sources around 50-60 Hz, and motion artifacts in the 0-20 Hz range
[28].

For this reason, EMG signals are often pre-processed before using
them. For example, low-pass and high-pass filters are applied to remove
the information outside the ranges mentioned above. Depending on
the equipment being used, this filtering can be applied by the hardware
before the signal is digitized, or afterward using software [31].

14



2.5 EMG feature extraction

Since the resulting (filtered) EMG signal still can contain unwanted
noise such as motion artifacts, features are often extracted from them
to use as input data to the SSI instead of the raw signal. Several meth-
ods for EMG feature extraction have been explored in the context of
silent speech studies. Maier-Hein et al. [33] first applied the Short-Term
Fourier Transform (STFT) to the EMG signal, which is a mathematical
technique used to analyze the frequency content of a signal over time,
and is often applied to speech signals. From the STFT they then calcu-
lated the delta coefficients, which represent changes over time. These
delta coefficients, together with the mean of the EMG signal in the time
domain, formed the set of input features. Jou et al. [34] introduced a
new feature extraction method, where they calculated the frame-based
mean, power, and zero-crossing rate of the EMG signal in the time-
domain (TD). They used contextual filters to model the context, such as
a stacking filter to add frames according to k£ context width. Wand et al.
[35] used this same method. Diener et al. [36] later developed these into
the TD-15 features: the low-frequency signal power, the low-frequency
signal mean, the high-frequency signal power, the high-frequency sig-
nal rectified mean, and the high-frequency signal zero-crossing rate.
The TDO (index) frame of all channels is combined and stacked into the
past and the future for 15 frames each, to create the final TD-15 feature
frames. Colby et al. [37] modeled Mel-frequency cepstral coefficients
(MFCCs) and chose two co-activation features. Meltzner et al. [38, 39]
concluded that the combination of MFCCs (and their corresponding
delta features) and muscle co-activation levels (quantified amount of
simultaneous firing activity between all possible pairs of EMG channels)
yielded the best recognition performance. In later research, Meltzner
et al. [40], only extracted MFCCs. Soon et al. [41] extracted features in
the temporal domain, namely integrated EMG, mean absolute value
(MAV), root mean square (RMS), variance, standard deviation (SD), and
simple square integral, and in the time-frequency domain the MAV,
RMS, variance, SD, and log RMS. Finally, Ma et al. [42] tried to reduce
the feature set by only extracting the MAV and RMS.
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2.6 EMG-based silent speech interfaces
As early as 1986, researchers found speech-related information in EMG
signals retrieved from facial and neck muscles in one of the first studies
on EMG-based speech recognition [43]. A pattern recognition algorithm
based on the maximum likelihood algorithm was able to classify 17
words with an accuracy of 35% and two words with an accuracy of 97%,
with four EMG channels. Later, they found that what the authors called
the "average magnitude" (presumably referring to the mean amplitude
of the rectified signal over time), provided the best information for
recognition, with a 58% recognition accuracy of 10 words, using four
channels [44].

This section provides an overview of the most important advances
made in EMG-based speech-related research since then, in different
areas and tasks.

2.6.1 Word recognition

Fifteen years after the initial EMG and speech study, Chan et al. [45]
reached a classification error of 2.86% on a ten-word vocabulary (zero
to nine) using a linear discriminant analysis (LDA) classifier, with five
EMG channels. Later, they used a Hidden-Markov model (HMM)
and achieved a 2.70% classification error [46]. On the same ten-digit
vocabulary set, Maier-Hain et al. [33] reported a maximum accuracy
of 98.8% using an HMM, with seven EMG channels. Other studies on
word recognition showed 86.7% accuracy on 65 words [38], 87.07% on
65 words [47], and 92.64% on 110 words [48].

All of these experiments were performed session-dependently,
however, Wand et al. [49] achieved a 21.93% word error rate (WER)
on a vocabulary of 108 words with a session-independent recognition
system.

2.6.2 Continuous speech recognition
Moving on to the recognition of continuous speech, Jou et al. [34] were

the first to attempt this, to our knowledge. Their system resulted in
a 32% WER with a 108-word vocabulary. Later, Meltzner et al. [39]
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reported a 69.9% recognition rate on a continuous vocabulary of 200
words, Deng et al. [50] reached a 15.2% WER on 1200 utterances, and
Wand et al. [51] showed 23.8% on 50 sentences.

2.6.3 Phoneme and syllable classification

In addition to recognizing isolated words and continuous speech, re-
searchers have also zoomed in on smaller linguistic units, like phonemes
and syllables. For instance, Zhou et al. [52] used an HMM to extract
phonemic log-likelihoods, which were subsequently matched to their
respective words using a word classifier, and reported an average word
accuracy of 98.5%. Lopez-Larraz et al. [53] presented a system that
recognizes 30 syllables from EMG signals with a mean accuracy of al-
most 70%. Wand et al. [54] used an LDA matrix of TD features as input
and a Gaussian mixture model (GMM) to classify 45 English phones (+
silence class), which resulted in an accuracy of 19.24%. Furthermore,
Schultz et al. [55] found that modeling co-articulation reduced the WER
in a speaker-dependent 101-word recognition task from 47.15 to 31.49%.
They modeled co-articulation by adding bundled phonetic features
referring to place and manner of articulation such as voiced fricative or
rounded front vowel.

2.6.4 EMG-to-speech conversion

Toth et al. [56] introduced a direct EMG-to-speech mapping approach
based on a frame-based voice conversion model, which required the
fundamental frequency (F0) values from the acoustic signals. Then,
Nakamura et al. [57] used a support vector machine (SVM) that recog-
nized whether a frame of an EMG signal was voiced or unvoiced with
an accuracy of 84%. When attempting to estimate the FO from EMG
signals using a GMM-based voice conversion model, the result sounded
unnatural. Zahner et al. [58] used a unit selection approach to convert
EMG signals to audible speech, which yielded an average Mel-cepstral
distortion (MCD) of 5.4. MCD is a metric to evaluate the quality of
speech synthesis by measuring the difference in MFCCs between the
original target signal and the converted synthesized signal. The lower
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the MCD value, the higher the similarity between the two signals, indi-
cating a higher quality of the synthesized speech. Diener et al. [36] did a
model comparison, and a subjective evaluation showed a preference for
the result of deep neural network (DNN) feature mapping over a GMM.
Janke et al. [14] used a DNN, which resulted in a mean MCD of 5.21
and a WER of 6.1-28.3%. However, they acknowledged that the overall
intelligibility was low. Diener et al. [59] found that the conversion of
continuous speech resulted in a higher MCD than isolated speech, even
though the dataset of continuous speech was larger. More advances in
this task were made by Gaddy et al. [60-62], who introduced a model
that is trained on nearly 19 hours of open-vocabulary EMG signals
acquired in both audible and silent mode from one typical male English
speaker. Their approach consists of a transduction model to predict a
set of audio features and a vocoder model to turn those features into
waveforms. To be able to train on silent EMG signals, they applied a
technique called dynamic time warping (DTW) to align these signals
with the parallel audible signal. When testing the model on EMG sig-
nals from silent speech, they achieved a WER of 36.1% from automatic
transcriptions and 32.3% by human evaluation. This is a large improve-
ment compared to the 88.3% (automatic) and 95.1% (human) WER on
their baseline model which was trained on EMG signals from audible
speech only. Their work is considered the current state-of-the-art for
EMG-to-speech conversion in English, mainly because of the acceptable
intelligibility of the resulting signals when testing on silent speech.

2.6.5 Speaker-independent models

Most of the above-mentioned studies have acknowledged a large nega-
tive impact of inter-speaker variability on the recognition performance,
and therefore have focused on improving speaker-dependent mod-
els only. However, a recent study by Zhang et al. [63] introduced a
multi-speaker model using an improved conditional domain adversar-
ial network (ICDAN). They reached an average accuracy of 86.32%.
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2.6.6 Other languages

English is the most studied language in this field, but efforts towards
other languages were made as well. For example, Mostafa et al. [64]
achieved an overall accuracy of 82.3% on 11 Bangla vowels, using three
channels. Soon et al. [41] compared four classifiers and found the best
results (62.7% accuracy) with a deep neural network (DNN) using only
one EMG channel, and performed this study for the Malay language.
Ma et al. [42] reached a 72% classification accuracy using random
forests, with four EMG channels, classifying 10 Chinese phonemes. Li
et al. [65] proposed an optimized sequence-to-sequence approach to
perform direct EMG-to-speech generation for Mandarin Chinese, and
achieved a character error rate (CER) of 6.41% on average using human
evaluation. They used the model by Gaddy and Klein for English [60]
as a baseline, which resulted in a much higher average CER, namely
39.76%. Deng et al. [66] performed word classification experiments
using a convolutional neural network (CNN) and achieved an 88.31%
classification accuracy on 33 Chinese words. Li et al. [67] managed
to reach 100% accuracy (and an average of 82.3%) when classifying
ten Mandarin numeric words using a SVM. Nonetheless, Zhu et al.
[68] found a higher accuracy when classifying the 10 digits in Chinese
compared to English and argued that it is important to pay attention
to language differences when deciding the optimal electrode setup for
best practices of silent speech recognition. It suggests that the best-
performing model might differ per language as well.

2.6.7 Speech-to-EMG and paralinguistics

Additionally, some other studies in this area are worth mentioning.
First of all, as an effort towards the domain of acoustic-to-articulatory
conversion, Botelho et al. [69] introduced a study of speech-to-EMG,
where they tried to recover the EMG signal from the acoustic signal.
They found this task was harder in a multi-speaker modality than in
a multi-session modality. Related to the challenge of inter-speaker
variability in EMG signals, is a study by Diener et al. [70], in which
they were able to predict the speaker ID based on their EMG signals
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with an average recall of 73%, for 5 speakers. They were also able to
predict the speaking mode of a speaker above chance level (audible:
50.6%, whispered: 50.3%, silent: 74.4%), which is also not surprising, as
differences in signals between speaking modes were already established
[35].

2.6.8 Alaryngeal speech

All of these studies were performed on healthy and typical individuals.
This can be logical depending on the goal of the task, but when the
goal is to restore speech for alaryngeal speakers, as is our case, it would
be crucial to include this kind of speech as well. To our knowledge,
Meltzner et al. [40] have been the only ones to compare the speech
of these two types of speakers. They found a WER of 10.3% for the
alaryngeal speakers. Furthermore, it appeared that the optimal sensor
set was different from typical speakers: sensors located near the surgery
site had less value in the case of alaryngeal speakers.

2.6.9 Summary

To summarize, many efforts have been made in the area of EMG-based
speech interfaces. Depending on the language, we can say that currently,
researchers have been able to directly predict speech from facial and
neck muscles with acceptable intelligibility, but this is heavily speaker-
dependent and relies on large amounts of data. Furthermore, there
is a major lack of research into silent speech interfaces for Spanish
alaryngeal speakers, which is the target group of our project. This
means that more research is required, in all areas of this topic.
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The Database
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Finding the Optimal Electrode Setup

This chapter describes a series of pilot experiments designed to define
the electrode setup for the new database described in Chapter 4. Mo-
tivated by the scarcity of information in related studies regarding this
important decision-making process, we decided to carry out a set of
experiments with multiple recording sessions and different setups. We
included different electrode types (paired and concentric) and locations
targeting different muscles in the face and neck involved in speech
production. We then analyzed the results obtained in a phone classifica-
tion task using frame-based phone accuracy. The final setup consists
of eight channels with bipolar single-electrode pairs targeting eight
specific muscles crucial for capturing speech-related information.
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Chapter 3. Finding the Optimal Electrode Setup

3.1 Introduction

As described in Chapter 1, a database of Spanish speech and EMG
signals is required to develop an SSI for Spanish alaryngeal speakers.
More specifically, an SSI is developed through machine learning, mean-
ing that a computer model is trained and tested on large amounts of
signals. The final interface takes the EMG signals acquired while articu-
lating silently and translates these into a synthetic voice. For the best
performance, it is essential to determine the optimal electrode setup
with which the EMG signals are acquired. Decisions have to be made
regarding the electrode type, number, and locations, while considering
practicality and speaker comfort. The process and results of making
these decisions are described in this chapter.

Over the years, several electrode setups have been used to acquire
EMG from facial muscles, differing in configuration type (monopolar,
bipolar, array electrodes, or a combination of them), shape (circular
or rectangular), number of channels (ranging from one to more than
100), and locations of the electrodes. Table 3.1 provides an overview
of previous studies and the electrode setups used. The first column
contains a reference to the study, the second column shows the type
and number of electrodes, and the third column lists the locations of
those electrodes. The locations refer to anatomical regions, or muscles
(see Figures 2.2 and 2.3 for images of the muscles in the face and neck).
For a description of the different configuration types, see Section 2.4.
When studies are grouped, the setups in these studies are the same. The
table is divided by double lines into four sections, corresponding to
four approaches used to select the electrode locations.

The first approach is targeting specific muscles. In a series of
studies by different research groups [33, 34, 36, 45, 46, 54, 55, 71], a group
of five muscles was targeted, namely the levator anguli oris (LAO), the
zygomaticus major (ZYG), the platysma (PLT), the depressor anguli oris
(DAO), and the anterior belly of the digastric (ABD), i.e. the superficial
muscle most related to the tongue. In other studies, different muscles
such as the buccinator (BUC), orbicularis oris (OBO), mentalis (MNT),
levator labii superioris (LLS), mylohyoid (MLH), sternocleidomastoid
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(SCM), or the risorius (RIS), i.e. the laughing muscle, were targeted [41,
42,48, 64,67, 72].

In the second approach, no specific muscles are targeted, but
anatomical regions. A series of studies using this approach by a group
of the same researchers include [37—40, 50, 73]. More recently, the same
approach was used by Gaddy and Klein [60-62].

The third approach is a high-density electrode setup without tar-
geting a particular muscle or anatomical region, either using electrode
arrays [36, 71, 74], or all single electrodes [68, 75-78].

A fourth approach was proposed recently by [66] in which they
used arrays to select eight electrodes to target specific muscles.

Table 3.1: Electrode number, type, and locations in previous studies. Each of
the sections lists studies with a similar approach. Grouped studies used the
same setup.

Reference Electrodes Locations
Chan et al. (2001, 2002) 5 pairs LAO, ZYG, PLT, DAO, ABD
[45, 46]
Maijer-Hein et al. 3 bi- and 4 LAO, ZYG, PLT, DAO, ABD,
(2005) [33] monopolar Tongue
pairs)
Jou et al. (2006) [34] 2 bi- and 4 LAO,ZYG, PLT, ABD, Tongue
monopolar
pairs)

Schultz and Wand 2 bi- and 3 LAO, ZYG, PLT, ABD, Tongue
(2010) [55]; Wand and monopolar
Schultz (2011) [54] pairs)

Diener et al. (2015) 2 bi- and 3 LAO, ZYG,PLT, ABD, Tongue
[36]; Diener (2021) [71] monopolar
pairs)

Mostafa et al. (2016) 3 electrodes MAS, BUC, Depressor
[64]

Continues on next page
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Table 3.1 — continued from previous page

Reference Electrodes Locations
Soon et al. (2017) [41] 1 pair OBO
Ma et al. (2019) [42] 2 monopolar RIS, ABD, LIN, LAO
electrodes, 2
bipolar pairs
Wang et al. (2021) [48] 4 pairs LAO, DAO, BUC, ABD
Wu et al. (2022) [72] 6 pairs MNT, RIS, LLS, ABD, MLH, PLT
Li et al. (2023) [67] 6 tripolar OBO, MAS, lower lip muscle, bi-
abdominal anterior abdomen, in-
ferior lateral muscle of the hyoid
bone, SCM
Meltzner et al. (2008) 11 bipolar bars supralabial, labial, sublabial, sub-
[38]; Colby et al. (2009) mental neck, midline neck, lat-
[37] eral neck
Meltzner et al. (2011) 8 single- submental neck, ventromedial
[39] differential neck, supralabial face, infralabial
bars face
Deng et al. (2014) [50] 4 sensors above and below the oral com-

missure, submental surface, ven-
tral neck surface

Meltzner et al. (2017)
[40]

8 differential
bars

submental, ventromedial, supral-
abial, infralabial

Meltzner et al. (2018)
[73]

11 sensors

submental region, ventral neck,
face

Gaddy and Klein (2020,
2021) [60, 61]; Gaddy
(2022) [62]

8  monopolar
electrodes

left cheek just above mouth, left
corner of chin, below chin back 3
cm, throat 3 cm left from Adam’s
apple, mid-jaw right, right cheek
just below mouth, right cheek
2 cm from nose, back of right
cheek; 4 cm in front of ear
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Table 3.1 — continued from previous page

Reference Electrodes Locations

Wand et al. (2013) [74]  two 1x8 strips cheek, chin

Wand et al. (2013) [74]; 4x8 grid, 1x8 cheek, chin
Diener et al. (2015) strip
[36]; Diener (2021) [71]

Zhu et al. (2019, 2020, 120 high- cheeks, neck
2021) [68,75,76]; Wang  density elec-
et al. (2020, 2021) [77, trodes

78]

Deng et al. (2023) [66] 8 electrodes ZYG, RIS, DAO, SCM, ABD, PLT
within two
32-channel
arrays

From the four approaches, we believe that the one where specific
muscles are targeted is the most accurate for the task of predicting
speech from facial muscles, considering the physiology of muscles
and the muscular anatomy of the face. First of all, while electrode
arrays might be suitable for large muscles, we believe it is not the
best approach when considering facial muscles. The arrays are rigid
and therefore difficult to adjust to the movement of the muscles while
speaking. Furthermore, knowing that activation potentials travel along
the length of a muscle, longitudinal acquisition of the target muscle
is required. However, most facial muscles are long, narrow, and close
to each other, so using an array (or a high-density setup with single
electrodes) increases the risk of cross-talk.

Figure 3.1 shows a diagram of the studies and how they are con-
nected. Here you can see that, as is normal in academic research, often
one study is a continuation of a previous study by a group of the same
authors. However, we realized that the studies that follow the approach
that we are interested in (see section one of Table 3.1) go back to one
study [45] or do not provide a systematic approach. For this reason, we
performed this pilot study to find the optimal electrode setup.
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Jou et al. Schultz and Wand Diener (et al.) Diener (et al.)

A
Wand et al.

2 t

A
T L‘
Chan et al. Maier-Hain et al.

___) 1

Gaddy and Klein

1 e o
= =

Meltzner et al.

Colby et al.

Soon et al.

Meltzner et al.

2017

Ma et al.

Denby et al. Wang et al.

Wang et al.

Meltzner et al.

|
Meltznle'r etal wang et al.

Lietal.

Figure 3.1: Diagram of studies and their electrode setups.
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Regarding the distinction between monopolar and bipolar EMG
acquisition configuration, the studies found [31, 79-81] are not very
conclusive and not focused on small muscles such as muscles of the
face. However, we were strongly advised by the equipment provider in
favor of bipolar configuration, which we adopted. Bipolar acquisition
ensures that there are two measuring points for the same muscle and,
when placed correctly, activity from a non-target muscle can be canceled
out. We compared two types of bipolar electrodes, namely concentric
electrodes and pairs of single electrodes. The results of this experiment
are included in this chapter. In addition, we tried cup electrodes that are
usually used for the scalp, due to their smaller size, but they appeared
to be too impractical to be used in the face. The main problem was that
these electrodes would not stay in place, as a result of movements in
the face and the weight of the cables.

To select the locations of the electrodes, we targeted 14 muscles in
the face and neck of one participant and used the results of per-channel
phone classification experiments to discard the least useful channels,
resulting in an 8-channel setup targeting five muscles in the face and
three in the neck: ABD, DAO, RIS, LLS, MAS, ZYG, depressor labii
inferioris (DLI), and stylohyoid (SLH).

This chapter is organized as follows. In the next section, the mate-
rials and methodology of the pilot study are described in more detail,
namely how the data is collected (Section 3.2.1) and processed (Sec-
tion 3.2.2), and the experimental part (Section 3.2.3) of the classification
tasks. Then, the results of the electrode type comparison (Section 3.3.1)
and the channel selection (Section 3.3.2) are summarised. Finally, we
provide a discussion and conclusion (Section 3.4).

3.2 Methods

This section describes the methodological part of this study. First, we
explain how we collected the data, the materials we used, and the result-
ing pilot database (Section 3.2.1). Then, we describe how we processed
the signals and extracted features from them (Section 3.2.2). Lastly, we
explain the experiments we performed and the models we used, and
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how we evaluated the outcomes of these experiments (Section 3.2.3).

3.2.1 Data overview

We collected data in three sessions on three different days by one male
native Spanish speaker. During a session, the participant could take a
short rest if required, but preferred not to. Each session was designed
with a different goal in mind and served as data for different experi-
ments (see Section 3.2.3). Table 3.2 provides an overview of the electrode
setups per session, specifically the muscles that were targeted in each
session.

Table 3.2: Electrode setups (targeted muscles) for each session in the pilot study
plus the final setup for the official sessions of the database.

Muscle Pilot session Official
1 2 3 sessions

anterior belly of the digastric (ABD) X X X X

depressor anguli oris (DAO) X X X X

depressor labii inferioris (DLI) X X X

frontalis (FRT) X

levator anguli oris (LAO) X

levator labii superioris (LLS) X X

masseter (MAS) X X X X

orbicularis oris (OBO) X

platysma (PLT) X

posterior belly of the digastric (PBD) X

risorius (RIS) X X X

sternocleidomastoid (SCM) X

stylohyoid (SLH) X X X X

sternothyroid (STR) X

superior belly of the omohyoid (SBO) X X

zygomaticus major (ZYG) X X X X

We placed the electrodes in the middle of the muscle. In the case
of the electrode pairs, the electrodes were placed next to each other in
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the direction of the muscle fiber. As a reference, we used images of the
respective muscles! and an online 3D anatomy visualizer?.

In terms of electrode type and size, we compared bipolar concentric
electrodes (Figure 3.2a) to bipolar single-paired electrodes (Figure 3.2b),
referred to as Session 1. On the one hand, the positions of the two
electrodes in a concentric electrode were fixed, which could help reduce
inter-session variability. On the other hand, a concentric electrode
had a larger diameter (40 mm) than a single electrode (24 mm), which
could result in more cross-talk. There was no inter-electrode distance
(IED) between the two bipolar electrodes. The inner diameter of the
concentric electrode was 10 mm and the outer diameter was 31 mm.
The participant recorded 250 phonemically balanced short sentences
taken from the Sharvard Corpus [82], once with each electrode setup,
which consisted of five channels on the left side of the face.

(a) Concentric electrodes (b) Single-paired electrodes

Figure 3.2: Electrode setup for Session 1, made up of five channels targeting
the same set of five muscles but using two different types of electrodes.

To see which muscles were most significant, we did a session

lwww.learnmuscles.com, last accessed on 25/09/2024
2www.zygotebody.com, last accessed on 25/09/2024
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(Session 2) in which we placed 14 single-electrode pairs in an attempt
to target 14 superficial muscles in the lower face, chin, and neck area
(Figure 3.3). The initial plan was to make the setup symmetrical, but
during the electrode placement, it turned out that the 14 channels had to
be divided over both sides of the face due to lack of space, resulting in
an asymmetrical setup. Each of the Spanish consonants was paired once
with each of the five vowels in Spanish, and the participant recorded
the resulting 105 consonant (C)-vowel (V) combinations three times in a
row. Context was added to each combination, in the format ata[C][V]ta,
to control for co-articulation.

(a) Right side (b) Left side

Figure 3.3: Electrode setup for Session 2, consisting of 14 channels targeting a
different muscle each.

After analyzing and comparing the 14 channels of Session 2 (Sec-
tion 3.3.2), we recorded another session (Session 3) to finalize the elec-
trode setup. More specifically, we wanted to know if there were no
large differences in performance between the electrodes we selected.
The 250 sentences from the Sharvard Corpus were recorded two times.
See Figure 3.4 for the electrode setup.
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(a) Right side (b) Left side

Figure 3.4: Electrode setup for Session 3, consisting of 10 channels targeting a
different muscle each.

Section 4.1 describes in detail the acquisition setup in which the
signals were acquired. In short, we collected the EMG data with a
bio-electrical amplifier, and the speech data with a microphone and
sound device, in a sound-proof room and using a silent computer. To
be able to align the EMG and audio signals, a synchronization signal is
shared between the amplifier and sound device.

The 26 phone classes present in the CV combinations are those
presented in Table 4.2, except /L/, /j/, and /w/. The two Spanish
semivowels /j/ and /w/ were left out of the CV combinations since
they are neither consonants nor vowels. The lateral palatal /L/ is often
replaced by central palatal /jj/ by many peninsular Spanish speakers
(a linguistic phenomenon called "yeismo”), which is why we did not
consider it when creating the CV combination dictionary manually. The
sentence set contains all the phones from Table 4.2, so 29 in total.

We split the data of each session into 80% for training and 20% for
testing. For the CV words recorded in Session 2, we made sure that the
balance of CV combinations was similar for the train and the test set.
For the 250 sentences recorded in sessions 1 and 3, we assigned the last
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20% of the sentences to the test set. See Table 3.4 for the amount of data
in time for each subset of each session.

Table 3.4: Overview of the durations of the train and test data sets per session
and electrode setup in the mm:ss format.

Electrode setup Corpus Train set  Test set
Session1 5 paired 250 sentences 09:12 02:16

5 concentric 250 sentences 09:02 02:17
Session2 14 paired 105 CV x3 01:00 00:15
Session3 10 paired 250 sentences x2  17:16 04:23

3.2.2 Data processing
To perform the phone classification experiments, the raw EMG and
audio signals needed to be processed and parameterized.

First, both audio and EMG signals were cut using the synchroniza-
tion signal. Subsequently, each audio signal was automatically aligned
with its phonetic labels using the Montreal forced aligner (MFA) [83].

Then, we parameterized the EMG signals by calculating a set of
time-domain (TD) features. These features have been widely used in
works related to EMG signals applied to speech recognition or gener-
ation [34, 60, 84]. In Section 2.4 a detailed description of EMG feature
extraction in the relevant literature, including the use of TD features, is
provided.

The initial step involves removing direct-current (DC) offsets from
each EMG signal for the duration of each utterance, as defined by the
synchronization signal. A DC offset is a baseline voltage that is not
zero, which can be seen as a constant background noise. Removing it
makes it easier to focus on the actual muscle activity. After this step,
each signal is normalized by dividing it by its maximum absolute value.
This ensures that all signal amplitudes are scaled consistently and easier
to compare.
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To obtain the TD features, we first separated the EMG signal (z[n])
into a low-frequency signal (w[n]) and a high-frequency signal (p[n]).
The low-frequency signal was obtained by calculating a double average
of z[n] using a nine-point window. The calculation can be expressed
as:

4 4
wln] = é kz4v[n +k, wherevfn] = % kz4x[n HH G

The high-frequency signal, p[n], was obtained by subtracting wn|
from z[n]. This can be represented as:

pln] = z[n] — w(n] (3.2)

In addition, a rectified version of the high-frequency signal, r[n],
was calculated as follows:

_ {oll, il 20
T[”]‘{—p[n] i pln] < 0 53)

With the low-frequency signal (w[n]), high-frequency signal (p[n]),
and rectified high-frequency signal (r[n]) obtained, we computed the
set of five TD features for each frame, using a window with a duration
of 25 ms and a frameshift of 5 ms. For w[n| and r[n], the frame-based
power (P, and P,) and the frame-based time-domain mean (w and
7) were calculated, and for p[n| the frame-based zero-crossing rate (z).
These features are defined as:

TDO = [w,7, Py, Py, 2] (3.4)
where:
| V-1 | V-1
w:N;w[n], T:N;r[n] (3.5
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1 N-1 1 N—-1
Py== > P, Po=< 3 [l (3.6)
n=0 n=0
N-1 ”
z= ; g(p[n]pln —1]), where g(z) = {(1) ifﬁ ; 8 (3.7)

where N denotes the number of samples in z[n]. To incorporate
temporal context into the features, a stacking filter was used to con-
catenate the features of 2k + 1 adjacent frames, where & represents the
width of the stacking filter. We selected k& = 15, resulting in a total of
31 frames being combined, with the analyzed frame in the center. The
stacked TDO vectors from all channels were then combined into a single
array, which served as the input for the classifier. The length of the
parameter vector assigned to each frame can be calculated as:

M-5-(2k +1) (3.8)

where M represents the number of channels.

To reduce the dimension of the parameter vector, we applied linear
discriminant analysis (LDA) [85], as done in [54, 86]. The number of
features is equal to the number of classes present in the data (phone
labels) minus 1, which is the maximum allowed number of features
in LDA reduction. In the case of the CV dataset, this resulted in 25
features, and in the case of the sentences, this resulted in 28 features.

3.2.3 Experiments

With the three experiments we performed, we had two goals. The first
goal was to find out which type of bipolar electrodes would yield the
highest accuracy. We used the data from Session 1 and did a phone
classification task using the signals of all five channels, one time with
the signals from the concentric electrodes and another time with the
single-paired electrodes. The second goal was to select the optimal
set of electrodes, regarding their number and locations. For this, we
did two experiments with the data from sessions 2 and 3. To assess
the amount of information provided by each muscle, a phone classi-
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fication experiment was performed using the signals from one single
channel each time. The muscles that achieved the highest accuracy were
considered to contain the most useful information to do the task.

Since the size of the data set used in each experiment was limited
to only one session, we did not want to base our conclusions on one
classifier only and decided to compare three classifiers. The first was a
Gaussian mixture model (GMM), which has been used in phone classi-
fication experiments before [54]. The second was a bagging classifier
with decision trees (DT) as estimators, which we thought appropriate
for the small data size. The third was a feed-forward neural network
(NN), which we wanted to include since NNs are the most standard
type of machine learning model used in recent years.

The maximum number of components in the GMMs was equal to
the number of classes minus 1. Starting with 1 component, it continued
adding components until the Bayesian Information Criterion (BIC) of
the new model was higher than the last model 's BIC.

The number of decision trees for the DT models was 50 for Session
2, and 100 for sessions 1 and 3. The minimum number of samples in
the leaf node was set to 5 for Session 2, and to 10 for sessions 1 and 3.
These parameters were set following a parameter tuning experiment, in
which we tried different combinations of parameter values and chose
the one that resulted in the highest validation accuracy.

For the NN we used one hidden layer, with twice the number of
features as input nodes, and the ReLU activation function. The output
layer consisted of as many nodes as there were phone labels, and the
softmax activation function. It was compiled using the cross-entropy
loss function and the Adam optimizer. We used a batch size of 32 and a
train size of 25 epochs for the experiments with data from Session 2, and
a batch size of 64 and a train size of 50 epochs for the experiments with
data from sessions 1 and 3. These parameter values were determined
after training a classifier for 100 epochs with batch sizes 32, 64, and 128,
and choosing the combination from the point the validation accuracy
stopped increasing.

For each model, 5-fold cross-validation was implemented on the
training set (which was 80% of the complete data set). We used the
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Chapter 3. Finding the Optimal Electrode Setup

mean frame-based phone accuracy of the five validation sets as an
evaluation measure to select the electrode locations and type. For
Session 1 we applied a Wilcoxon Signed-Rank Test to check for statistical
differences. We used the test accuracy to evaluate if the final setup was
appropriate.

3.3 Results

This section summarizes the results of the experiments. First, the results
of the comparison of electrode types (Section 3.3.1), and then the results
that were used to select the channels (Section 3.3.2), are shown.

3.3.1 Electrode type
Figure 3.5 shows the mean validation accuracy per classifier and type
of bipolar electrode, obtained with data from Session 1.

Classification method
mmm Neural Network
40, { ™™ Decision Trees
mmm Gaussian Mixture Models

=]
B

20%

Average validation accuracy

5
2

concentric paired

Electrode type

Figure 3.5: Mean frame-based validation accuracy after 5-fold cross-validation
per electrode type and classification method, obtained from the data of Ses-
sion 1. The vertical bars represent the confidence intervals, and the red line
represents the baseline, which is the mean validation accuracy when always
predicting the most frequent class [a].
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It appears that, for all classifiers, the phone classification accuracy
is significantly higher when using single-paired electrodes compared to
concentric electrodes (p < 0.001). For this reason, we selected the paired
electrodes for our optimal electrode setup.

3.3.2 Channel selection
Figure 3.6 shows the mean validation accuracy per classifier and chan-
nel, obtained with data from Session 2.

A0% 4 Classification method
mmm Neural Network

mmm Decision Trees

mmm Gaussian Mixture Models

Average validation accuracy

DAD PLT sBO LAD  ABD SLH PED  OBO
Channel

Figure 3.6: Mean validation accuracy after 5-fold cross-validation per channel
and classification method, obtained from the data of Session 2. The vertical
bars represent the confidence intervals, and the red line represents the baseline,
which is the mean validation accuracy when always predicting the most
frequent class [e].

It appears that for most channels, the highest accuracy is achieved
by the NN and the lowest by the GMM. Interestingly, the order of the
channel with the highest to the one with the lowest accuracy is different
for each classifier. However, for all three classifiers (both separately
and averaged), the six channels with the lowest accuracy are SLH, PBD,
OBO, DLI, STR, and SCM.
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Chapter 3. Finding the Optimal Electrode Setup

It is important to mention that the electrodes of the three chan-
nels around the mouth, namely both electrodes of OBO, and the top
electrodes of DAO and DLI, did not stick as well as the electrodes of
the other channels. This was most likely due to the area under the
electrodes being curved as a result of lip movement. We had to reattach
these electrodes a few times during the session. The OBO channel had
the most severe attachment problem as it was also affected by sweat
and condensation of air coming from the nose.

We repeated the experiment with the data of the three rounds of
the sessions separately, and it turned out that DLI belonged to the top 5
of highest accuracy in the first round, but decreased with each round.
For this reason, we decided not to discard this channel yet.

After discarding OBO, STR, and SCM for their low performance,
we took another look at the muscular anatomy of the remaining chan-
nels. The muscles SLH and PBD are located very close together and
performed similarly as well, so we decided to only discard channel
PBD and keep SLH, although in practice channel SLH most probably
represents information from both muscles. In addition, we realized that
the LAO is a very short muscle, but that the LLS is a closely located but
longer muscle. So we decided to replace LAO with LLS because longer
muscles are easier to target, and additionally to avoid the area directly
above the lips. Furthermore, we saw that the PLT is a broad sheet of
muscle instead of a muscle with a more specific location, making it diffi-
cult to know whether the information we are measuring belongs to this
muscle. Therefore we decided to remove the channel corresponding to
PLT.

Additionally, we added one new channel for the muscle of the
forehead, the frontalis (FRT). The purpose of this channel was to be
used as a reference, as it was not expected to provide any muscle
information related to speech.

Finally, the set of 10 channels included in the next recording session
(Session 3) was the following: MAS, ZYG, RIS, DAO, SBO, LLS (instead
of LAO), ABD, SLH, DLI, and the new FRT (see Figure 3.4).

Figure 3.7 shows the test accuracy per channel and classifier after
performing the classification experiment described in Section 3.2.3 on
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the data from Session 3. It can be seen that the channel with the lowest
test accuracy is FRT with a performance similar to baseline. This result
provides an extra assurance that the other channels indeed carry some
information related to speech production. The highest test accuracy
when using all the channels except FRT was achieved with an NN, at
48.42%.
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0% T T T
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Figure 3.7: Test accuracy per channel and classification method for the data
of Session 3. The red line represents the baseline, which is the test accuracy
when always predicting the most frequent class [a].

For the final setup, we left out FRT for obvious reasons, but SBO
as well. This channel is located in the area where the stoma is located
in alaryngeal speakers. For studies with a different target group, this
muscle might be a valuable addition, but for our study, we realized it
was not practical.

The final setup, containing ABD, LLS, MAS, SLH, ZYG, DLI, DAO,
and RIS, has been used to record the ReSSInt database (described in
Chapter 4). For the experiments in the following chapters, data from
this database is used.
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3.4 Discussion and Conclusion

Following a common approach in previous studies where individual
muscles in the face and neck are targeted [33, 34, 36, 41, 42, 45, 46, 48,
54,55, 64, 67, 71, 72], we looked at the contribution of 14 individual
muscles in a phone classification task. As a result of this study, we
decided to include eight bipolar single-electrode pairs targeting one
muscle each, of which five are located in the face and three in the neck,
in an asymmetrical setup. Out of the eight muscles, six are present
in the setups of at least one of the studies mentioned above as well,
namely the ABD, DAOQ, RIS, LLS, MAS and ZYG. The LAO is more
commonly used instead of LLS, but we chose LLS because it is a longer
muscle. There are two more muscles that we included, namely the
DLI and SLH. As far as we know these muscles have not been used
in previous research, however, they have proven to be valuable in our
experiments.

One important limitation of the study described in this chapter is
that the experiments have been done with only one speaker. However,
the channels that we discarded for reasons other than practicality had a
noticeably lower performance than the channels we selected. We believe
that the selected setup could be generalized to other speakers, as the
muscles used for articulation are the same regardless of individual
variance in the manner of articulation, but that some channels might be
more useful than others depending on the speaker.

Additionally, due to the lack of space in the face of the speaker, we
had to place the electrodes asymmetrically, and we assumed that this
would not cause any difficulties, since the musculature of the face is in
theory symmetrical. Multiple studies listed in Table 3.1 use an asym-
metrical setup. However, we acknowledge that there is a possibility
that the results could have turned out differently if we mirrored the
setup, and that this has to be researched further.

Our setup consists of eight channels, which is more than the num-
ber used in related studies, which varies from one [41], three [64], four
[42, 48], five [36, 45, 46, 54, 55, 71], six [34, 67, 72] to seven [33].

We selected single electrodes for our setup because we experienced
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that electrode arrays were not flexible enough, which made it harder to
target the specific muscle we were interested in. However, we acknowl-
edge that arrays from a different manufacturer could be less rigid and
therefore more useful. Furthermore, a recent study [66] found a way to
overcome the issue of not targeting specific muscles when using arrays,
by selecting electrodes within the arrays that are located on the target
muscles. An advantage of using arrays is that it is less prone to elec-
trode shifts between sessions, reducing session variability, so it could
be worth examining this option in future database developments.

Note that for the pilot study experiments described in this chapter,
we looked at the impact of each channel individually. However, we
assume that for the production of each (combination of) sound(s), not
one, but at least a group of two muscles (channels) are responsible.

In this chapter, we presented a series of pilot experiments we
conducted to find the optimal electrode setup for developing a database
of EMG and (silent) speech data. The final setup consists of eight bipolar
single-electrode pairs each targeting a muscle in the face or neck that
has proven most valuable and practical in the experiments. Future
recommendations when selecting the optimal electrode setup are to
look into the potential effect of asymmetry and the contribution of
a group of channels in different linguistic contexts. Furthermore, it
could be interesting to test the assumption that everyone uses the same
muscles for speech by comparing multiple speakers.

3.5 Contribution

This chapter contributes to this research field for several reasons. First,
it compares multiple electrode types and setups, which can help other
researchers in their search for the optimal setup. Second, its description
of finding the setup is more elaborate than most similar studies, where
often it was not described why a certain setup was chosen. Third, it is
the first study performed with data from Spanish speakers.
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The ReSSInt-EMG Database

This chapter describes all the steps involved in the design and develop-
ment of the ReSSInt-EMG database. This database of parallel EMG and
speech signals contains 22.5 hours of data from nine Spanish-speaking
participants of different sexes and ages, both typical and alaryngeal.
The signals correspond to either audible or silent speech mode. Dif-
ferent text corpora were recorded, to be used for different purposes.
The complete and diverse database is a valuable contribution to the
development of an EMG-based SSI (for Spanish) and forms the basis of
the experiments described in this thesis.
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Chapter 4. The ReSSInt-EMG Database

4.1 Introduction

The development of a database requires a lot of preparation and a well-
established methodology. First, it is important to determine the goal of
the database. In our case, as explained in Chapter 1, the final goal is
to train a model that can predict speech from the muscle movements
of alaryngeal speakers. Our plan was to train the model on phoneti-
cally labeled EMG signals and test it using unlabeled EMG signals. To
assign phonetic labels, it is essential to know which phonetic output
corresponds to each EMG signal. Therefore, we aimed to synchronize
the audio signal with the simultaneously recorded EMG signals from
typical speakers who produced speech audibly. By doing so, we could
transfer the phonetic labels from the audio signal to the corresponding
EMG signals. This is not possible to do with empty audio signals from
silent speech. However, we wanted to include silent speech data from
both alaryngeal and typical speakers to use as test data. Furthermore,
we planned to include data from multiple speakers so that we could
develop a multi-speaker interface.

However, during the database recording stage (which lasted more
than a year), novel research [62] revealed that it is possible to train
a model on audible speech in combination with silent speech using
the DTW technique. This resulted in better model performance than
using audible speech only, but it required a lot of data from one speaker
(see Section 2.6 for more details on this study). For this reason, we ad-
justed our initial plan and recorded additional sessions for one speaker,
focusing more on silent speech than audible speech.

This chapter is organized as follows. In the methodology (Sec-
tion 4.2), we start with the description of the different types of speech
content (text corpora) we collected and why (Section 4.2.1). Then, we
describe the acquisition setup (Section 4.2.2), namely which hardware
and software we used, and how we ensured synchronization between
the audio and EMG signals. We finish this section by explaining the
recording protocol step-by-step (Section 4.2.3), which we followed to
ensure the database’s consistency as much as possible. For the results
(Section 4.3), we present the meta-information of the database (Sec-
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tion 4.3.1), in terms of speaker information, session information, and
duration, along with some data examples (Section 4.3.2).

4.2 Methods

This section provides a detailed overview of the data collection proce-
dure to develop the ReSSInt-EMG database. It describes the corpora
(4.2.1), acquisition setup (4.2.2), and the recording protocol (4.2.3).

4.2.1 Text corpora

We refer to a text corpus as a body of text in a certain format that is
used to control which linguistic content the speaker intends to articulate
(with or without sound) while recording. Each corpus can be used for
different purposes. We describe the three types of corpora that we used
in the recording of the ReSSInt-EMG database below. Table 4.1 shows
which content belongs to which corpus ID.

Table 4.1: Type of content related to the different corpus IDs.

Corpus ID Content
001 110 VCV combinations
002 100 isolated words
003 Sharvard sentences 1-100
004 Sharvard sentences 101-400
005 Sharvard sentences 401-700
006 Ahosyn sentences 1-150
007 Ahosyn sentences 151-300
008 Ahosyn sentences 301-400
009 Ahosyn sentences 401-500
010 Ahosyn sentences 501-505
011 Ahosyn sentences 506-570
012 Ahosyn sentences 571-635
013 Ahosyn sentences 636-700
014 Ahosyn sentences 701-765
015 Ahosyn sentences 766-830
016 Ahosyn sentences 831-895
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Vowel-Consonant-Vowel combinations

Following the Speech Assessment Methods Phonetic Alphabet (SAMPA)
[87] for Spanish!, there are 22 consonants, 2 semi-vowels, and 5 vowels.
The consonants are further divided into plosives, affricates, fricatives,
nasals, and liquids. Table 4.2 lists each speech sound with the SAMPA
symbol, as well as the corresponding International Phonetic Alphabet
(IPA) symbol for future reference.

Leaving the semi-vowels out of consideration due to their acoustic
complexity means that there are 110 consonant (C)-vowel (V) combina-
tions. A specific CV corpus can be useful due to the equal distribution
of phones and combinations. Possible applications are to research
phone-specific topics such as phone confusion, manner and place of
articulation with relation to specific muscles, and level of difficulty for
each phone. For this reason, the first text corpus used for the database
(referred to as corpus 001) contains 110 non-sense words with the fol-
lowing format: at[VCV]ta?. We included these contexts to make sure
each VCV combination is affected by the same co-articulation effects.
To reduce the number of combinations, only combinations where the
same vowel occurred twice were considered. The idea behind this is
that all possible phonetic transitions are included, from V to C and from
C to V. See Appendix A for the complete list of text prompts for the
speaker to articulate.

'https:/ /www.phon.ucl.ac.uk/home/sampa/spanish.htm, last accessed on
25/09/2024

Note that the CV corpus used in the pilot study (Section 3.2.1) had one less CV
combination, namely with the consonant /L/. Despite the yeismo phenomenon, we
decided to include it in the corpus for the official database nonetheless. We also
improved the format from CV to VCV.
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Table 4.2: Spanish speech sounds per category, in SAMPA and IPA format.

SAMPA

IPA

Consonants

Plosives

/p/
/b/
/t/
/d/
/k/
/g/

[p]
[b]
[t]
[d]
[k]
[9]

Affricates

/tS/
/ji/

[t/]
il

Fricatives

/f/
/B/
/T/
/D/
/s/
/x/
/G/

[f]
[B]
[0]
[3]
[s]
[x]
[v]

Nasals

/m/
/n/
/]/

[m]
[n]
n]

Liquids

/1/
/L/
/t/
/rr/

[1]
[4]
[r]
[«]

(Semi-)vowels

Semi-vowels

/j/
/w/

il

Vowels

/i/
/e/
/a/
/o/
/u/

[i]
[e]
[a]
[o]
[u]
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100 most useful Spanish words

The second text corpus (referred to as corpus 002) is a list of 100 words
in Spanish which we considered most useful in daily communication.
The words were taken from a website® that is focused on improving
daily communication for people with reduced communication means.
From each category, a few general words were selected. Then we also
checked the phonetic balance to see if every speech sound in the Spanish
language was represented. Since some of the nouns included in the list
have two genders, we made an equal division between masculine and
feminine variations (for example hermano and nieta, and not hermana
and nieto). See appendix B for the complete list of words.

There were two reasons why we included this corpus. The first is
so that we had an isolated corpus of words to be used for experiments
such as word classification. The second is that by representing these
words relatively more in the data used for training, the model would
have a better chance of performing well with these most important
words.

Sentences

The last type of content that was included were sentences, which were
taken from two existing corpora. The first is the Sharvard Corpus,
which is a phonetically balanced corpus of 700 Spanish declarative
sentences [82]. On average there are eight to nine (8.48) words per
sentence. The second is the Ahosyn Corpus, which was developed
to record text-to-speech (TTS) databases [88]. From this corpus, we
extracted 895 declarative and interrogative sentences, with an average
of almost 13 (12.88) words per sentence. The corpora that contain these
sentences are referred to as 003 to 016.

Sentences most closely resemble continuous speech, which the
model ultimately needs to handle for fluent use of the interface. For
this reason, sentences are the focus of the three corpora described here
and make up the largest part of each session.

s https:/ /arasaac.org/pictograms/search, last accessed on 25/09/2024
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4.2.2 Acquisition setup

This section describes in detail the devices and environment used to
record the database, and the recording protocol. The protocol also
includes our approach to mitigate inter-session variability, namely the
use of reference points and personalized 3D masks.

Hardware

For the acquisition of EMG signals, we used a 96-channel Quattrocento
bio-electrical amplifier, a 16-channel bipolar adapter with a jack con-
nector, 8 single-channel bipolar adapters with a concentric connector,
8 bipolar electrodes (24 mm) with a concentric connector, a ground
cable, and a wrist strap with a male clip connector. The amplifier was
connected to the power source continuously, but during recording the
device automatically switched to battery use only. The EMG signals
were recorded with a sampling frequency of 2048 Hz.

To record the audio signals, a Neumann TLM103 diaphragm mi-
crophone connected to a sound interface was used. This was done with
a sampling frequency of 16 kHz.

To ensure that the EMG and audio signals are synchronized, an ex-
tra signal was shared between the bio-electrical amplifier and the sound
interface. This synchronization signal was generated by the amplifier at
the beginning and the end of each prompt, and was registered into an
extra EMG channel. The signal was also outputted by the amplifier as
an analog signal and introduced into one of the channels of the sound
interface. As a result, the stereo audio signals contain the speech signal
in the left channel and the synchronization signal in the right channel.

We used a silent computer to reduce interference with the audio
and EMG signals as much as possible.

Additionally, a camera captured a video of the facial movements,
to provide supplementary data and allow multi-modal experiments,
such as automatic lip reading. However, in the experiments described
in this thesis, the video data were not considered.

Figure 4.1 shows an image of the complete acquisition setup.
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Figure 4.1: Acquisition setup: (1) bio-electrical amplifier; (2) silent computer;
(3) computer screen; (4) camera; (5) microphone; and (6) audio interface.

Software

For the acquisition and synchronization of the audio and EMG signals,
we used publicly available software*, which also includes a user in-
terface. The official software from the OT Bioelettronica EMG device
company, OTBioLab+°, was used to check the quality of the signals
before each recording session.

Environment

Each session was recorded in a soundproof room. To reduce inter-
session variability in audio and video as much as possible, the positions
of the speaker, microphone, and video camera were kept constant for
all sessions. We made sure there was a researcher present in the room
at all times to check that the presented text prompts were pronounced

*https:/ / github.com/cognitive-systems-lab/EMG-GUI, last accessed on 25/09/2024
5 https:/ /otbioelettronica.it/en/software/, last accessed on 25/09 /2024
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correctly. Furthermore, we constantly checked the quality of the EMG
signals and replaced electrodes when they detached.

4.2.3 Recording protocol
The recording protocol was approved by the ethics committee of the
University of the Basque Country.

The complete recording protocol of one session consists of the
steps described below. The first session was different than the sessions
following it because it was necessary to make a 3D scan to create the
3D mask. From the second session onwards, the 3D mask was used. So
the first session followed steps 0, 1, 2, 4, 5, 6, and 7, and the steps for
the second session and onwards were 3, 4, 5, 6, and 7.

Step 0: Signing consent form and giving instructions

Before the speaker came in for the first time, we sent them a document
with instructions, so that they knew what to expect. The instructions
were as follows:

* Try to articulate well

* Redo an utterance if you are not satisfied: not well articulated,
not correctly pronounced, or moved during recording

¢ Take a break when necessary

* Don 't touch the cables if not necessary

¢ Don 't remove any cables

¢ Let us know when the reference band feels dry

* Let us know when you feel an electrode detaching

¢ Come shaved and without make-up or face cream

For ethical purposes, the speaker was required to sign a consent
form on the first day.
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Step 1: Marking the electrode locations

First, the locations of the electrodes were identified using facial land-
marks and a measuring tape, using a procedure that was repeated for
each speaker. For each muscle, these were the markers:

1.

Levator Labii Superioris: From the top of the lip up, in the direction
of the middle of the eye.

Masseter: The top is at the center of the left half of the distance
between the middle of the ear and the nostril, in the direction of
the neck.

Risorius: From the corner of the mouth, in the direction of the
bottom of the ear.

Depressor Labii Inferioris: From the center of the distance between
the corner of the mouth and the bottom of the lower lip, in the
opposite direction of the nostril.

Zygomaticus Major: In the direction of the center of the distance
between the corner of the eye and the bottom of the ear. The
center of the distance between this point and the corner of the
mouth is the actual center.

Depressor Anguli Oris: From the corner of the mouth in the oppo-
site direction of the nostril.

Anterior Belly of the Digastric: The center is the center of the dis-
tance between the bottom of the chin and the thyroid cartilage or
stoma, in the direction of the nostril.

Stylohyoid: The center is the center of the distance between the
corner of the cheekbone and the thyroid cartilage or stoma.

The electrodes that were used are bipolar single electrodes, which

means that two electrodes form one channel. So, the electrode setup
consists of eight electrode pairs. The electrode locations were marked
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with three dots: in the middle between the two electrodes, and on the
outer ends. This process was repeated for all eight electrode pairs,
resulting in 24 reference points total (see Figure 4.2).

(a) Right side (b) Left side

Figure 4.2: Reference points to be used to locate the electrodes.

The process of selecting the electrode type and locations is de-
scribed in Chapter 3.

Step 2: Making a 3D scan

A personalized 3D mask (Figure 4.3) was used to ensure that the elec-
trode locations remained constant throughout all sessions. After the
reference points were marked in Step 1, a 3D-printing professional made
a 3D scan of the face and printed a mask with holes corresponding to
the reference points.

Step 3: Mark the electrode locations

The speaker was asked to hold the 3D mask tight and steady to their
face. The researcher helped with adjustment if necessary, to ensure that
the mask aligned with the face completely. Then, with a skin-friendly
marker, the reference points were marked on the skin through the holes
in the mask.
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Figure 4.3: A personalized 3D mask. The holes were used as reference points
to find the positions of the electrodes on the participant’s face.

Step 4: Placing the electrodes

Using the reference points drawn in Step 3 (or Step 1 in case of the first
recording session), the electrodes were placed on the face. We asked the
speakers beforehand to shave, remove any make-up or cream, and clean
the face. Also, before every electrode pair was placed, we cleaned the
face one more time with alcohol. Then we applied conductive cream,
which improved contact between the electrode and the skin. Figure 4.4
shows where the electrode pairs on each muscle were located for one of
the participants.

Step 5: Connecting the cables

Every electrode pair was connected to a 16-channel bipolar adapter with
a single-channel bipolar adapter. Strong armbands were used to hold
the cables in place and reduce the pulling effect caused by their weights.

56



Figure 4.4: Electrode setup in the ReSSInt-EMG database. 1: Levator labii su-
perioris, 2: Masseter, 3: Risorius, 4: Depressor labii inferioris, 5: Zygomaticus
major, 6: Depressor anguli oris, 7: Anterior belly of the digastric, 8: Stylohyoid.

Then a wet reference strap was put on the left wrist, which is directly
connected to the device with a ground cable. Once all the cables were
connected, the speaker was asked if they could move their head freely
and no cable was pulling. The speaker was instructed not to move their
left arm. With their right arm, they had access to a mouse, which they
needed to click to mark the start and end of each utterance. Then the
OTBioLab+ software was used to check that all channels provided good
signals.

Step 6: Recording

We made sure that all the hardware and software worked before the
speaker came in for their session so that once the electrodes were placed
and the cables were connected, the recording session could start imme-
diately.

Step 7: Disconnecting the cables and removing the electrodes

When the recording session finished, the cables were disconnected
and the electrodes were removed carefully. We provided the speaker
with make-up remover to remove the marks on their face. We asked
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the speaker about their experience and wrote down everything that
could affect the data. Examples are a decrease in motivation, tiredness,
detached and replaced electrodes, and environmental influences such
as extreme heat.

4.2.4 Quality control

As it is difficult to understand the characteristics of an EMG signal with
the human eye, as opposed to speech signals, we had to rely on other
methods to evaluate the signals” quality. The first step was to validate
the acquisition setup by comparing the signals of the first few sessions
with those of a reference database. This study is described in Chapter 5
and assured us that we could move forward with the selected setup.

From the beginning, we identified the problem of electrode de-
tachment. First, our approach was to re-attach them every time they
detached. It happened mostly to the electrodes around the mouth. Later,
we used medical tape to secure them and replaced the entire electrode
pair instead of re-attaching them.

After the first more extensive study with our data (see Chapter 6)
we realized that for a few sessions, the EMG signal quality was not sat-
isfactory. We decided to pause the recording process, find the source of
the problem, and perform a more detailed quality check on the already
recorded data. With help from an expert from the EMG equipment
supplier, we found out that we were supplied with a bad batch of
electrodes, which is why some sessions had low-quality signals and
others did not. After receiving new electrodes, we continued recording
and watched the EMG signals more closely while recording. The latter
was especially useful in identifying a detachment problem before the
electrode fell off since it showed either high noise or no signal at all.

Additionally, a quality check was performed by a colleague after
each recording and consisted of evaluating the signal’s minimum, max-
imum, mean, median, and root mean square (RMS). Each measure was
calculated per utterance and channel and then averaged. Sessions that
represented outliers in one of these measures did not pass the check
and were recorded again.
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4.3 Results

This section shows the output of the data collection process, by provid-
ing all the detailed meta-information, such as speaker information and
signal duration, and examples of recorded data.

4.3.1 Meta-information

In total, nine Spanish-speaking people participated as speakers in the
data collection process of the database, of which six typical speakers
and three alaryngeal speakers. Initially, a fourth alaryngeal speaker
came in to record as well, but their data was of too low quality to be
able to include in the database. The number of sessions recorded by
each speaker varies from 1 to 15 sessions. Table 4.3 shows the relevant
information per speaker.

Table 4.3: ID, type, sex, age, and number of recorded sessions of each speaker
in the database.

Speaker  Speaker Sex  Age Number of

ID type recorded sessions
001 typical male 29 15

002 typical female 29 8

003 typical male 51 4

004 typical female 46 4

005 typical male 45 8

006 typical female 61 4

007 alaryngeal female 61 2

008 alaryngeal = male 77 1

009 alaryngeal = male 64 2

The database contains a total of 22.5 hours of recordings, that are
distributed among the different speech modes and corpus types as
specified in Table 4.4. See Appendix C for a detailed overview per
speaker.
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Table 4.4: Duration of the database per speech mode (audible or silent) and
corpus type (VCV, words or sentences) in the format hh:mm:ss.

Audible Silent Total

VCV 1:22:01  0:39:04 2:01:05
Words 1:11:16  1:02:49  2:14:05
Sentences 13:33:22  4:44:21 18:17:43

Total 16:06:39  6:26:14 22:32:53

4.3.2 Data examples

The language in which the speech data was acquired is Castilian Span-
ish. Two speech modes were used: audible and silent. Audible speech
refers to typical speech produced with sound, and silent speech refers
to articulated-only speech where no sound is produced, also called
mouthed speech. Simultaneously, EMG data was recorded, namely
eight signals from eight locations in the face and neck. An example
of an audio signal and an example signal of each EMG channel are
shown in Figure 4.5, together with the synchronization signals. Note
the difference in amplitude height for the EMG signals, since not ev-
ery muscle has the same amount of muscle activation. These signals
correspond to an utterance produced audibly. When an utterance is
produced silently, the audio signal is still included in the database, but
it is of course empty.
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Figure 4.5: Audio, EMG, and synchronization signals corresponding to "Hay
gemas de gran valor en la tienda." in audible mode from speaker 001.
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4.4 Discussion and Conclusion

In this chapter, we have described the newly developed ReSSInt-EMG
database and the design and execution of the data collection process.
The final database contains 22.5 hours of EMG and speech signals
recorded in several different contexts.

We removed or repeated sessions when we found that the quality
did not adhere to our standards. This was often due to the detachment
of electrodes during recording, but sometimes we could not find a direct
reason.

While meticulous efforts were invested to ensure the overall quality
and reliability of all EMG signals within the database, it is important to
acknowledge the challenging nature of EMG signal acquisition. Despite
our effort to prevent the inclusion of signals associated with detached
electrodes, the database might contain signals that deviate from the
intended standard.

For future research, (parts of) the content of this database can be
used for several applications. In the following chapters of this thesis,
it will become evident how we used the data for tasks such as phone
classification and statistical analysis to study the effect of linguistic
content and variations between speakers and recording conditions on
a model’s ability to predict speech from muscle activity. Colleagues
have also been involved in tasks more directly related to SSIs, such
as EMG-to-text, EMG-to-speech, and introducing lip movements from
the video images to these tasks. The presence of different text corpora,
speakers, and sessions, makes it possible for other researchers in the
field to select the relevant data for their tasks.

Although we followed the instructions from the manufacturer of
the EMG hardware, there are two points we did not consider, which
could possibly improve the process of EMG acquisition in the future.
First, we did not pay attention to the polarity of the EMG channel since
we were told by the EMG manufacturer that this did not matter. If it
does matter, the matter of polarity could be included in the model, but
we suggest to already keep the consistency during recording. Second,
even though we used the same method to locate the muscle for each
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speaker and were very careful doing so, new information was provided
to us that in the medical field, apparently muscles are located using
the technique of palpation. We highly recommend investigating this
technique before starting EMG acquisition, since it could improve the
accuracy of locating the right muscle and reduce the risk of cross-talk.

4.5 Contribution

The ReSSInt-EMG database is a valuable contribution to the field of
EMG-based silent speech recognition and other research related to the
complex interaction between speech and muscle activity. First of all, it
includes more than 22 hours of data, and it is also the first to focus on the
Spanish language. Furthermore, it contains data from both typical and
alaryngeal speakers, and it allows for the development of multi-modal
applications due to the inclusion of video images. Despite challenges
like electrode detachment, efforts were made to ensure the database’s
quality. Looking ahead, the database promises a variety of applications
in the field. Recommendations for future EMG data acquisition include
attention to EMG channel polarity and the use of palpation techniques
for muscle localization.

The database will be publicly available on the website of the European
Land Registry Association (ELRA)®. An official report can be found on
the website of the ReSSInt project”’.

6https: //www.elra.eu/, last accessed on 25/09/2024
7h’ctps: / /aholab.ehu.eus/ressint/resultados/, last accessed on 25/09/2024
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Validation of the Acquisition Setup

This chapter aims to validate the acquisition setup of the new ReSSInt-
EMG database, by comparing the phone classification performance with
that of a reference database. The reference database is the EMG-UKA
Trial Corpus, which is a comparable SSI database of parallel EMG and
audio signals, but for English. The results show an average classifi-
cation accuracy of 40.85% for a small amount of ReSSInt-EMG data,
compared to an accuracy of 28.32% for the same amount of reference
data. Although a direct comparison cannot be made since the databases
were recorded in different circumstances, the large difference in accu-
racy suggests that the data acquisition procedure of the new database
is valid.

65



Chapter 5. Validation of the Acquisition Setup

5.1 Introduction

As described in Chapter 4, we have created the first known SSI database
for the Spanish language. We selected the electrode setup for acquir-
ing the EMG signals of this database after performing a pilot study
described in Chapter 3. The complete acquisition setup, including the
bio-electrical amplifier, the computer and screen, the microphone, and
the audio interface, was determined based on the relevant instruction
manuals. The goal of the research described in this chapter was to
validate the setup before continuing to record the entire database.

The structure of this chapter is as follows. First, we describe the
methodology in Section 5.2. In short, we selected a public database with
similar contents to use as a reference database. Although the signals
were acquired in English, they are parallel audio and EMG signals
from multiple speakers and sessions, acquired with a single-electrode
setup. Then, we performed the same data processing procedure and
phone classification experiments on both databases. The results of these
experiments are listed in Section 5.3, which are discussed in Section 5.4.
To summarize, although a direct comparison between the two databases
could not be made, we found that the classifier was able to predict the
correct phone label with much higher accuracy using the signals from
our database than those of the reference database. This provided us
with enough confidence to continue recording our database with the
selected acquisition setup.

5.2 Methods

This methodology section includes three subsections, namely an overview
of the selected data (Section 5.2.1), how we processed these data (Sec-
tion 5.2.2), and a description of the phone classification experiments
(Section 5.2.3).

5.2.1 Data overview
In this section, we describe the reference database and the part of the
ReSSInt-EMG database we used for the experiments in this chapter.

66



The EMG-UKA Trial Corpus

The EMG-UKA Trial Corpus is a subset of the complete EMG-UKA Cor-
pus! [89] and includes four speakers and 13 recorded sessions (see Table
5.1 for details). It contains three types of speech utterances: audible,
whispered, and silent. For the experiments described in this chapter,
we only used the EMG signals corresponding to the audible utterances.
Each session includes 50 audible sentences, except for session 101 from
speaker 002, which contains 520 sentences. The sessions with 50 sen-
tences are divided into a training set of 40 sentences and a test set of 10
sentences. Session 101 from speaker 002 is divided into 500 sentences
for training and 20 sentences for testing.

The muscles targeted in the EMG-UKA corpus, using six channels,
are: the LAO (channels 2 and 3), ZYG (channels 2 and 3), PLT (channel
4), ABD (channel 1), DAO (channel 5), and the tongue (channels 1
and 6). It must be noted that channel 5 was not used in most of the
phone recognition experiments performed with this database [51, 90—
92]. However, it has been used in [93] for word recognition, speaker
identification [70], and speech-to-EMG conversion [69, 94]. We decided
to use all the channels, including channel 5.

We found that the phonetic transcriptions included in the EMG-
UKA Trial Corpus were partially incorrect, and therefore we created
new phonetic transcriptions, using the Librispeech lexicon 2 and addi-
tional transcriptions for words that were initially not included in the
lexicon. Additionally, we did a new phonetic alignment using the MFA
[83]. In total, a set of 40 different phone labels was identified. Initial
and final silences were removed, but short pauses inside the sentences
were included in the phone classification experiments.

'https:/ /catalog.elra.info/en-us/repository /browse/ELRA-50390/, last accessed on
25/09/2024.
*https:/ /www.openslr.org/11/, last accessed on 25/09/2024.
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Table 5.1: Session information of EMG-UKA and ReSSInt-EMG databases.

Database Speaker Session Sex Duration
EMG-UKA 002 001 M 3:29
003 3:24
101 26:04
004 001 F 3:23
006 001 M 3:45
008 001 M 3:19
002 3:06
003 3:02
004 2:50
005 2:41
006 2:40
007 2:38
008 2:42
ReSSInt-EMG 001 001 M 16:51
002 17:31
003 17:00
004 19:24
002 001 F 25:25
002 26:50
003 25:55
004 27:06
003 001 M 24:38
004 001 F 26:05

The ReSSInt-EMG database

The selected data from the ReSSInt-EMG database consists of the first
few sessions recorded by four speakers, with a total of ten sessions.
The lower part of Table 5.1 shows the details of these sessions. The
duration corresponds to the sum of the audio signals per session, after
synchronization with the EMG signals.

During each recording session, three different kinds of items were
recorded, namely non-sense words with VCV structures, isolated words,
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and sentences. The sentences correspond to either one of the two exist-
ing corpora Sharvard or Ahosyn. The number of Ahosyn sentences in
each session is smaller than the number of Sharvard sentences because
they are generally longer. See Section 4.2.1 for more details of the text
corpora.

Table 5.2: Corpus information of ReSSInt-EMG sessions. All the signals in
these sessions were acquired in audible speech mode.

Session Corpus
110 VCV combinations
all 100 isolated words

Sharvard sentences 1-100
001 Sharvard sentences 101-400
002 Sharvard sentences 401-700
003 Ahosyn sentences 1-150
004 Ahosyn sentences 151-300

Table 5.2 shows that the first 100 sentences of the Sharvard cor-
pus were recorded in each session. We assigned the final 20 of these
sentences to the test set to have a similar test set size as in the long
session of the EMG-UKA database (002-101). The training set consists
of the remaining sentences recorded in that session, either 230 or 380,
depending on the session number.

One session from one speaker (002-002) was left out of the experi-
ments after we found that the synchronization signal was not recorded
correctly during part of the session. Without a good synchronization
signal it is impossible to align the EMG and audio signals. This session
was later repeated and the final database now includes this good-quality
session.

For the ReSSInt-EMG database, a partially different electrode setup
was used, compared to the EMG-UKA Trial Corpus. First of all, there
are eight channels, each targeting a different muscle. The following
three targeted muscles are similar: the ABD, ZYG, and DAO. Two others
are close to, or underneath, the muscle targeted in the EMG-UKA setup:
the LLS and DLI. The remaining three are additional: the RIS, MAS,
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and SLH.

Each speech utterance was aligned with the corresponding pho-
netic transcription using the MFA. The phonetic dictionary was created
using the Aholab transcriber, which uses the SAMPA phone set consist-
ing of 29 different phones (see Table 4.2 for an overview). As with EMG-
UKA, initial and final silences have been removed but short pauses
inside the sentences have been taken into account in the classification
experiments.

For the EMG-UKA corpus, both monopolar and bipolar channels
were used, whereas the ReSSInt-EMG database only contains signals
from bipolar channels. Furthermore, the type of electrodes is different,
in terms of form, size, and manufacturer.

5.2.2 Data processing
The extraction of the TD features from the EMG signals has been done as
in the pilot study described in Chapter 3. The five frame-based features
are the following: the time-domain mean of the nine-point double-
averaged signal, the power of the nine-point double-averaged signal,
the time-domain mean of the rectified high-frequency signal, the power
of the rectified high-frequency signal, and the zero-crossing rate. A
window of 25 ms duration and 5 ms frame shift was used to extract the
EMG features. A total of 5 x N features were calculated for each frame,
where N is the number of channels (V=6 for EMG-UKA and N=8 for
ReSSInt-EMG). To add context information to the frames, the features of
surrounding frames and the features of the current frame were stacked
together with a stacking filter. The width of the stacking filter indicated
the number of adjacent frames before and after the actual frame. Since 5
TD features were calculated for each of the N EMG channels, the length
of the parameter vector assigned to each frame can be calculated as
N -5-(2k+1), where k = 15 was the width of the stacking filter. A more
detailed description of these features can be found in Section 3.2.2.

To reduce the dimension of the parameter vector, we applied LDA
[85], as in [54] and [84]. For EMG-UKA, a reduction from 930 to 32 fea-
tures was performed, while for ReSSInt-EMG the features were reduced
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from 1240 to 28. The difference in the number of phone classes for each
database partially explains the difference in the number of features,
since the maximum allowed number of features in LDA reduction is the
number of classes minus 1. We adopted the number 32 from previous
work with the EMG-UKA database [54].

Furthermore, Mel-frequency cepstral coefficients (MFCCs) were
extracted from the audio signals using a Hamming window, calculating
13 coefficients for each frame. To obtain the coefficients, we used a
30-filter filter bank.

5.2.3 Experiments

The experiments consisted of the classification of phone labels from
EMG-TD features or audio-MFCCs. Phone classification experiments
have been previously performed with the EMG-UKA database [54, 84],
so we decided to use these experiments for this study as well.

We used a bagging classifier [95] with 100 DTs as estimators and a
required minimum of 50 samples in the leaf node. We compared other
classifiers, such as an NN, a GMM, and bagging classifiers with different
estimators, however, the bagging classifier with DTs yielded the highest
validation accuracy. The classification was performed in speaker- and
session-dependent modality, which means that the training and test
were derived from the same speaker and session. Cross-validation
was performed using the K-fold method, dividing the utterances in the
training subset into five groups (K = 5). Five classifiers were trained,
using four different folds each time and testing them with the unseen
fold. Then the obtained results were averaged. Finally, a new classifier
was trained using all the training data, which was tested with the test
subset to obtain the test accuracy.

5.3 Results

Tables 5.3 and 5.4 show the obtained results of the phone classification
experiments performed on the EMG-UKA Trial Corpus and the ReSSInt-
EMG database, respectively. Since the classification was performed
speaker- and session-dependently, the results are shown for each session
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separately. The tables show the following three types of frame-based
accuracy values:

¢ The test accuracy based on the MFCCs (acoustic signals). These
values are provided as a practical reference for the general classi-
fier performance.

¢ The validation accuracy based on the EMG signals. Since the K-
fold validation method was used, the mean and SD of the accuracy
results obtained with the 5 folds are shown.

¢ The test accuracy based on the EMG signals.

Table 5.3: Phone accuracy obtained with EMG-UKA database.
MEFCC EMG Valid. EMG Test

Speaker Session

acc. (%) acc. (%) acc. (%)
002 101 52.87 26.82+0.35 28.32
002 001 44.04 23.264-0.97 19.99
003 45.07 28.1141.20 25.69
004 001 40.81 20.63+0.75 16.14
006 001 45.44 22.1142.03 22.26
008 001 44.13 29.7540.50 25.94
002 43.47 29.504-0.88 24.08
003 41.25 27.084-0.92 22.78
004 43.97 28.554+1.29 23.63
005 44.77 29.37+1.29 25.81
006 42.99 29.43+1.67 25.79
007 43.05 28.33+1.29 23.17
008 40.05 27.214-0.48 24.77
mean+sd 43.25+1.65 26.94+3.02 23.33+2.76

The results for the long EMG-UKA session 101 from speaker 002
have been underlined in Table 5.3. Due to the different duration of this
session compared to the other sessions, the averages shown in the last
line of this table do not include that long session.
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Table 5.4: Phone accuracy obtained with ReSSInt-EMG database.
MEFCC EMG Valid. EMG Test

Speaker Session

acc. (%) acc. (%) acc. (%)
001 001 69.98 45.92+1.24 44.01
002 71.93 44.17+0.57 45.25
003 71.50 42.07+1.18 43.98
004 67.64 40.06+1.10 36.42
002 001 70.57 40.5240.58 40.91
003 68.17 35.86£1.04 37.65
004 73.02 36.44+0.98 40.76
003 001 71.01 42.84+0.39 41.80
004 001 69.55 38.78+0.68 36.84
mean-+tsd 70.37+1.64 40.74+3.18 40.85+3.09

5.4 Discussion and Conclusion

To create the ReSSInt-EMG database, we had to determine the acqui-
sition setup, namely the type, number, and locations of the electrodes,
the acquisition equipment, and the contents and duration of the record-
ing sessions (see Chapters 3 and 4). The classification experiments in
this chapter aimed to validate the acquisition procedure, so we per-
formed the experiments under similar experimental conditions using
both the new database and a reference database. More specifically, we
aligned the characteristics of the ReSSInt-EMG sessions with those of
the longest EMG-UKA session in terms of duration and employed the
same classifier with identical features and parameters.

Although the experimental design was different in terms of pho-
netic labeling and the type of classifier used, the results we obtained
with the EMG-UKA Trial Corpus were in the range of those presented
in the literature [54, 84]. Interestingly, the validation accuracy obtained
for the short EMG-UKA sessions was on average similar to that of the
long session, despite the differences in the amounts of training material.
However, as expected, the highest test accuracy was obtained with the
largest session (101) from speaker 002.
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The results of the ReSSInt-EMG sessions show some variability
among speakers as well as among different sessions from the same
speaker, despite the effort of using a personalized 3D mask to avoid
session variability within speakers. However, this variability was also
observed in the results for the acoustic data, so it cannot be directly
attributed to a variation in the electrode locations.

A side-by-side comparison between the results of the experiments
performed on the two databases is not feasible, due to the differences in
the experimental setup. The languages differ, resulting in a difference in
the number and type of phone classes (40 classes for EMG-UKA vs. 30
for ReSSInt-EMG). Furthermore, the recording conditions and materials
used were not the same. This means that the following comparisons
aim to contextualize the performance of the ReSSInt-EMG database in
relation to the EMG-UKA database.

First of all, the difference of almost 30 percentage points in the
acoustic classification accuracy (43.25% for EMG-UKA and 70.37% for
ReSSInt-EMG) assured us that the acoustic signals were of sufficient
quality. We believe that the 70.37% accuracy could potentially improve
by adding more training data and possibly adjusting the classification
method and parameter settings, but that was not the aim of this study.

Secondly, the results of the classification with EMG signals show
that each of the sessions in the ReSSInt-EMG database scored higher
(on average 40.85%) than the best-performing session of the EMG-UKA
database, which was the largest session and achieved an accuracy of
28.32%. The idea was that if the new database obtained at least the
same results as the reference database, then the new data would be
considered valid. The results confirm this, leading us to decide to
continue recording the rest of the sessions of the ReSSInt-EMG database
with the established acquisition setup.

5.5 Contribution

The chapter presents the classification results of data from two EMG-
audio databases. It offers the first results on the ReSSInt-EMG database
and provides a baseline for future research.
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Part of this chapter has been published as:
Del Blanco, Eder; Salomons, Inge; Navas, Eva; Herndez, Inma. “Phone

Classification Using Electromyographic Signals”. In: IberSPEECH 2022.
ISCA, Nov. 2022, pp. 31-35. DOI: 10.21437 /IberSPEECH.2022-7.
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The Impact of Speaker and Session
Variability

This chapter evaluates the impact of variability between speakers and
sessions on the development of an EMG-based SSI. The methodology
consists of a series of phone classification experiments, where phonetic
labels of unlabeled EMG signals were predicted with a classification
model trained on phonetically labeled EMG signals. We evaluate and
compare the performance of each model using classification accuracy.
Results show that the models can predict the phonetic label best when
they are trained and tested on data from the same session. The accuracy
drops drastically when the model is tested on data from a different
session, yet it improves when more data are added to the training
data. Similarly, when the same model is tested on data from a differ-
ent speaker, the accuracy decreases. This suggests that using larger
amounts of data could help to reduce the impact of inter-session vari-
ability, but more research is required to understand if this approach
would suffice to account for inter-speaker variability as well.
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Chapter 6. The Impact of Speaker and Session Variability

6.1 Introduction

To develop an SSI that can predict speech from facial muscle movements,
a large database of (parallel) EMG and speech data is required. In
Chapter 4 we already described how we created such a database for
Spanish, called the ReSSInt-EMG database. Due to speakers getting
tired and electrodes detaching over time, there is only a limited amount
of data available per session. Generally, speakers were able to record for
one hour, resulting in approximately 30 minutes of data per session.

This calls for the effort to mitigate variations between signals from
different sessions, to be able to train an SSI model with as much data as
possible. Several factors increase the speaker and session dependency
on the model performance and decrease its generalization capability
[16-18]. Some of these cannot be controlled, namely individual speaker
characteristics such as variations in anatomy, articulatory patterns, and
speaking style. Even the same speaker may exhibit variability in artic-
ulation across different sessions due to factors such as fatigue, mood,
motivation, and health. However, other factors related to session vari-
ability can be controlled to some extent. For example, we tried to keep
the EMG electrode placement across sessions as constant as possible
by using a personalized 3D mask for each speaker (see Section 4.3).
Furthermore, we followed a recording protocol (see Section 4.2.3) to
use the same standard for each speaker and session. Environmental
factors are more difficult to control, such as background noise or un-
comfortable levels of temperature or humidity. For this reason, we
occasionally postponed sessions or interrupted them to record later in
better conditions.

Nevertheless, despite these efforts, and because of the influence of
uncontrollable factors, speaker and session variability is inevitable. In
this chapter, we study the impact of this variability, specifically when
using data from our database. We performed a set of phone classifica-
tion experiments using data from different speakers and sessions. The
task of classifying phones is similar to those performed in Chapters 3
and 5, but in this chapter, we improved the classification and feature
reduction methods.
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The structure of this chapter is as follows. Section 6.2 describes the
data from the ReSSInt-EMG database we used as well as the experimen-
tal design. The results of the experiments are described in Section 6.3,
which are then interpreted and discussed in Section 6.4.

6.2 Methods

This section describes this study’s methodology, namely the data used
for the experiments, how these data were processed, and the experi-
ments themselves.

6.2.1 Data overview

Table 6.1 shows the details of the sessions of the ReSSInt-EMG database
that we used for this study, namely, 16 sessions in total from six different
speakers. Note that this is only a part of the complete database, as
recordings were still ongoing at the time the experiments in this study
were performed. Furthermore, all of these sessions were acquired in
audible mode. See Section 4.2.2 for more information about the data
acquisition, and an image of the electrode setup in Figure 4.4.

For the experiments described in this chapter, we only used the
signals corresponding to the Sharvard and Ahosyn sentences and not
the VCV combinations or isolated words (see Table 5.2).

Each session was split into 80% training and 20% test data. During
the recording process, the utterances were presented in a unique and
random order. To ensure consistency, we assigned the final 20% of
each set of sentences as test data before the experiment. This approach
ensured that the time of recording within each session was unrelated
to the train—test split, and the utterances designated as the test set
remained constant for each speaker.

6.2.2 Data processing

A phonetic dictionary was created using the Aholab transcriber, which
uses the Spanish SAMPA phone set, comprising 29 phones. Then, each
audio signal was segmented into phone labels using the MFA.
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Table 6.1: Speaker and session information for the part of the ReSSInt-EMG
database used in this study. The duration is expressed in mm:ss format and is
limited to the part of each session that includes audible sentences.

Speaker Sex Age Session Duration Train Test

001 16:51 13:28  03:23
001 M 29 002 17:32 14:04 03:28
003 17:00 13:48 03:12
004 19:22 15:14  04:08
001 25:25 20:20 05:05
002 F 29 002 30:34 24:27  06:07
003 22:36 18:17  04:19
004 27:06 21:18  05:48
003 M 51 001 24:38 19:50 04:48
002 21:43 17:27  04:16
004 F 46 001 26:04 20:46 05:18
002 24:09 19:17  04:52
005 M 45 001 23:39 18:56  04:43
002 22:31 18:00 04:31
006 F 61 001 32:57 26:21  06:36
002 29:01 23:21  05:40

Initial and final silences were removed, while short pauses between
words were kept, resulting in an extra class. This results in a total of 30
classes.

From the EMG signals, we extracted five TD features, after remov-
ing the direct-current offsets and normalizing them. The TD features
were calculated as proposed in [34], and are explained in more detail in
Chapter 3.2.2.

We used a window with a duration of 25 ms and a frame shift of 5
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ms to extract the EMG features. Since five TD features were calculated
for each of the eight EMG channels, the length of the parameter vector
assigned to each frame resulted in 1240 features for a width of the
stacking filter of 15 and 8 channels.

To reduce the dimension of the parameter vector, we applied LDA.
To select the optimum dimension, we analyzed the effect of the number
of features on the frame-based phone classification accuracy. Figure 6.1
shows the average validation accuracy per number of LDA features for
the first session of each speaker. Based on this graph, we selected 21
LDA features because the average accuracy reaches a plateau at that
value. Selecting a higher number of features would result in a more
complex model and a longer training time. The classifier used to search
for the optimal LDA value was an NN with a batch size of 128 and 20
epochs.

45% -

40%

35% -

Validation accuracy

20%

1 2‘ .‘3 ﬁ‘l 5 é % é é l‘Dl‘l 1'2 1‘31‘4 lIS 1‘6 1‘71‘8 ].I92‘02‘12‘22'32‘42‘52'52‘72‘829
Number of LDA features
Figure 6.1: Validation accuracy per number of LDA features averaged over
session 001 of all speakers. The classification method is an NN with a batch
size of 128 and 20 epochs. The solid line represents the average accuracy, and
the area above and below the line shows the standard deviation range.
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6.2.3 Experiments

This section describes the experimental part of the study, namely the
classifier used and its configuration and how we considered speaker
and session dependency for the experiments.

Classification Method

The classifier used for the experimental part of this study is a feed-
forward NN with one hidden layer using a batch size of 256 and 100
training epochs. We chose these parameters based on a hyper-parameter
search by tracking the validation accuracy during 250 training epochs
for three batch sizes: 64, 128, and 256. We repeated this for session 001
of all six speakers and averaged the results (see Figure 6.2). We selected
100 training epochs because at that point the performance reaches a
plateau. Additionally, we selected the largest batch size (256) because
there is no difference between the three batch sizes, and a larger batch
size means lower training time. The network has an input dimension
equal to the number of features (21 nodes) and a dense layer with twice
as many nodes as features (42 nodes in total) using a rectified linear
units activation function [96]. The output layer has the same number
of nodes as the number of classes (30, which includes the Spanish 29
phones and a silence class) and uses a softmax activation function [97].
Furthermore, a categorical cross-entropy loss function and the Adam
optimizer [98] with a learning rate of 0.001 were applied.
We used 5-fold cross-validation to obtain the validation accuracy.

Speaker and Session Dependency

This study involves three separate rounds of experiments, each varying
in terms of speaker and session dependency. In the first round, the
data were both speaker- and session-dependent, which means that the
training and test data were taken from the same session. In the second
round, the data were speaker-dependent but session-independent. This
means that the training data came from a different session or different
sessions than the test data, but that all sessions were recorded by the
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Figure 6.2: Validation accuracy per number of epochs and three batch sizes
averaged over session 001 of all speakers. The solid line represents the average
accuracy, and the area above and below the line shows the standard deviation
range.

same speaker. This method allows for the evaluation of the effect of in-
creasing the amount of data from the same speaker on the performance
of the model as well as the impact of inter-session variability on the
accuracy. In the third round, we used speaker-independent data by
training the model using data from multiple sessions of one speaker
and testing it using data from another speaker.

The test session contains a session-specific corpus that was not
included in the sessions used to train the model, making the experiment
speaker-independent but also text-independent. The goal was to assess
the potential of creating a model that can be applied to new speakers
without the need for adaptation by training it only on data from the
actual database.

6.3 Resulis

In this section, we show the results of the experiments, first from those
in the session-dependent mode and then from the ones we performed
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in the session-independent mode, which are both speaker-dependent.
Lastly, we also show the results from the speaker-independent experi-
ments.

6.3.1 Speaker-dependent, session-dependent
Table 6.2 shows the results of the session-dependent experiments, for
which the model was trained and tested with data from the same
speaker and session. Some speakers show higher classification accuracy
(speakers 001 and 005) than other speakers, but speaker 006 has the low-
est results, in particular for session 002. After reviewing the data from
sessions with relatively lower results, we realized that some channels
presented low-quality signals, related to the performance and detach-
ment of the electrodes. Specifically, in sessions 003-002, 004-002, 005-001,
and 006-002, we observed this quality issue. For all these sessions, the
results are between 5.82 and 10.55% lower than the other session of the
same speaker, except for 004-002. However, it does affect the session-
independent experiments, as will become clear in Section 6.3.2.

The identification of this issue resulted in more strict quality control
and the re-recording of these sessions to include in the final database,
as described in Section 4.2.4.

Table 6.2: Speaker-dependent, session-dependent classification results.

Speaker Session Validation Test
accuracy accuracy

001 50.48+1.01 46.42

001 002 49.12+0.86 47.15
003 45.804+0.66 45.53
004 50.41+1.05 50.54
001 43.71+0.48 42.61

002 002 42.804+0.96 4252
003 38.76+1.35 38.05

Continues on next page
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Table 6.2 — continued from previous page

Speaker Session Validation Test
accuracy accuracy
004 39.39+0.77 39.64
003 001 46.73+£1.12 45.27
002 42.41+41.07 39.45
004 001 43.224+1.50 38.44
002 41.29+41.37 39.62
005 001 43.61+£1.56 41.19
002 51.45+0.54 50.40
006 001 35.92+1.17 35.27
002 28.39+1.31 24.72
mean+tsd 43.34+5.80 41.68+6.14

6.3.2 Speaker-dependent, session-independent

To evaluate session-independent classification, we first used the models
from the previous section (session-dependent experiments) and tested
them using the test set from another session. Then, we trained new
models using a variable number of training sessions from the same
speaker. The results in Table 6.3 show that the test accuracy decreases
in a session-independent configuration. This decrease in test accuracy
is not the same for every speaker. However, when additional sessions
are included in the set of training data, the test accuracy increases.
Nevertheless, it is always lower than the test accuracy obtained with
session-dependent classification.

On the other hand, contrary to the test accuracy, the validation accu-
racy decreases as more training sessions are added. This is an indication
of less over-fitting, as it shows better generalization capability.

The effect of some low-quality signals in a few sessions (mentioned
in Section 6.3.1) is challenging to assess in these experiments because
both training and test sessions include some of these defective signals,
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in the case of speakers 003 to 006. For instance, both experiments for
speaker 004 showed poor results because session 004-002 was used
either for training or testing.

Table 6.3: Speaker-dependent, session-independent classification results.

88

Speaker  Train Test Validation Test
session(s)  session accuracy accuracy

001 002 001 49.12+0.86 23.40
002,003 45.08+0.89 27.89
002,003,004 42.50+0.74 30.41
001 002 50.48+1.01 19.57
001,003 46.85+1.07 22.11
001,003,004 43.81+0.70 24.54
001 003 50.48+1.01 14.19
001,002 48.16+1.14 18.09
001,002,004 45.00+0.34 18.25
001 50.48+1.01 15.86
001,002 04 4816+1.14  22.38
001,002,003 44.49+0.37 2493

002 002 001 42.80+0.96 10.00
002,003 39.69+0.53 18.32
002,003,004 37.90+0.61 21.93
001 43.71+£0.48 20.90
001,003 002 41234109 2381
001,003,004 37.79+£0.80 24.19
001 43.71+0.48 17.79
oot002 V%3 2464102 18.03
001,002,004 39.63+0.53 16.73

Continues on next page



Table 6.3 — continued from previous page

Speaker  Train Test Validation Test
session(s)  session accuracy accuracy
001 004 43.71+0.48 19.01
001,002 42.46+1.02 20.84
001,002,003 39.4240.51 22.92
003 002 001 42.41+1.07 20.66
001 002 46.73+1.12 15.05
004 002 001 41.294+1.37 10.95
001 002 43.2241.50 8.63
005 002 001 51.45+0.54 11.83
001 002 43.614+1.56 23.61
006 002 001 28.39+1.31 16.02
001 002 35.92+1.17 8.30

6.3.3 Speaker-independent
To evaluate speaker-independent classification, we employed the mod-
els trained with three sessions from the session-independent experi-
ments and tested them with the remaining session from each of the
other speakers. The results, presented in Table 6.4, show that the clas-
sification accuracy varies greatly, despite all models being trained on
similar amounts of data. This table only shows the test accuracy, since
the validation accuracy of these models is already shown in Table 6.3.
When one of the low-quality sessions is used as a test session, the
test accuracy is also low, so that effect is clear.
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Table 6.4: Speaker-independent classification results.

Train Train Test Test Test
speaker sessions session speaker accuracy
001 002,003,004 001 002 19.47
003 14.47
004 12.08
005 9.33
006 8.41
001,003,004 002 002 18.28
003 15.10
004 6.91
005 19.90
006 8.51
001,002,004 003 002 8.36
001,002,003 004 002 1047
002 002,003,004 001 001 14.07
003 15.71
004 14.78
005 8.11
006 10.53
001,003,004 002 001 15.95
003 18.09
004 10.26
005 16.90
006 7.21
001,002,004 003 001 16.79
001,002,003 004 001 20.43




6.4 Discussion and Conclusion

This chapter presents the results of the frame-based phone classification
experiments performed to assess the impact of speaker- and session-
variability in the data of the ReSSInt-EMG database.

The session-dependent classification results show varying out-
comes not only across speakers but also across multiple sessions from
the same speaker. Furthermore, the session-independent results indi-
cate a large decrease in test accuracy when the model was tested with
data from sessions that were not included in the training data, with the
effect of this difference depending on the speaker.

Unfortunately, this means that the impact of inter-session vari-
ability in the EMG signals from our database when predicting speech
sounds from them is quite substantial. We have already established
the risk factors of EMG acquisition at different moments and our ap-
proaches to address them in Section 6.1, however, we will now elaborate
on these issues in greater depth.

First, despite the use of a 3D mask, small variations in electrode
placement can occur between sessions. Unless a robot can be used
to place the electrodes, differences of a few millimeters are inevitable.
Second, the physical or mental state of the speaker may lead to slight
differences in articulation between sessions, as each is recorded on a
different day. For instance, a person may articulate with less effort
when feeling exhausted, resulting in reduced muscle activation. Third,
environmental conditions such as temperature and humidity can affect
the speaker’s state and the contact between the electrodes and the
skin. High temperatures may cause increased sweating and decreased
motivation. These factors can result in each session being recorded
under unique circumstances, which impacts the recorded EMG signals.
Consequently, a model that can identify patterns in the EMG signals of
one session may struggle to recognize those same patterns in signals
from a different session.

Interestingly, when more sessions were added to the training data,
the test accuracy increased. Given a corresponding decrease in vali-
dation accuracy, we believe that the improvement is due to enhanced
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diversity and representation of the data, allowing the model to better
generalize beyond the training data. These results suggest that devel-
oping an EMG-based SSI with sufficient performance for real-world
applications requires a large and diverse database. While using a larger
set of training data may potentially slow down the experiments and
require additional resources, we firmly believe that it is crucial to use as
much training data as possible, provided that sufficient processing ca-
pabilities are available and the addition of new data leads to improved
model performance.

The speaker-independent classification results demonstrated a sub-
stantial decrease in test accuracy when trained with data from other
speakers, even when the amount of training data was comparable to the
speaker-dependent, session-independent models. This suggests that
the differences between the EMG signals of different speakers are sub-
stantial, making it challenging for the model to generalize to a different
speaker. These differences can be attributed to various factors, such as
differences in speakers’ physiognomy, articulation manner, or speaking
pace. Further experiments are needed to investigate whether training
the model with a more extensive database from a single speaker or
with data from multiple speakers can enhance speaker-independent
performance.

6.5 Contribution

This chapter provides an analysis of the impact of signal variation be-
tween speakers and sessions on the phone classification performance
with data from the ReSSInt-EMG database.

Part of this chapter has been published as:
Salomons, Inge; Del Blanco, Eder; Navas, Eva; Herndez, Inma; De
Zuazo, Xabier. “Frame-Based Phone Classification Using EMG Signals”.

In: Applied Sciences 13.13 (June 2023), p. 7746.
DOI: 10.3390/app13137746.
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Phone Confusion Analysis

This chapter describes a phone confusion analysis of a set of phone
classification experiments based on EMG signals. Understanding the
relationship between speech and the muscles used for speaking is es-
sential to learn the possibilities and limitations of an EMG-based SSI.
When considering only information from the muscles of the face and
neck, important information from the tongue and vocal cords is missing.
This is reflected in the results, which show confusion between pairs of
phones that only differ in the tongue’s position, or the voicing feature.
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Chapter 7. Phone Confusion Analysis

7.1 Introduction

In this chapter, we continue with a series of phone classification exper-
iments, but this time with the aim to analyze phone confusion after
using EMG signals to classify phones and to gain insight into the re-
lationship between muscle movement and speech. Previous phone
confusion analysis for English showed that detecting voicing as well as
the manner of articulation when using EMG signals is challenging [54].
This chapter focuses on the Spanish language, but we expect a similar
trend since surface EMG electrodes are located in the face and neck,
which makes capturing the inner movement of the tongue difficult, and
the tongue is an important part of speech production in either language.
However, Spanish uses a different phone set, so we believe that for
the development of an EMG-based SSI for Spanish, a language-specific
phone confusion analysis is necessary because it could provide new
insights.

The outline of this chapter is as follows. In Section 7.2.1, we de-
scribe the dataset used in this chapter, and in Section 7.2.2 we explain the
steps involved in the data processing procedure. Section 7.2.3 describes
the experimental part of this study. In Section 7.3, the results of the
experiments are presented. These results are analyzed and discussed in
Section 7.4, together with a summary of the findings.

7.2 Methods

The methodology consists of a classification task aimed at predicting
the correct phone label of frames of EMG signals. We used data from
the ReSSInt-EMG database and trained a one-layer feed-forward NN
using cross-validation with features extracted from those signals.

7.2.1 Data overview

The part of the database (Chapter 4) that we used in this chapter consists
of 28 sessions recorded by six speakers (3 males and 3 females) aged
29 to 61, with a total of 11.5 hours of audible speech data. The number
of recorded sessions differs per speaker (see Table 7.1 for an overview
of the sessions and the total audio duration per speaker). In each
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session, a consistent base set of utterances was recorded, consisting of
three distinct sets: 110 VCV combinations, 100 isolated words, and 100
sentences. Additionally, each session included another set of sentences,
which was unique for each session, but remained consistent across
speakers. During data processing, each set of words or sentences was
split into an 80% training set and a 20% test set. This division process
was applied uniformly to each session to ensure consistency. It is
important to note that the test set was derived from the 100 sentences
within the base set. As a result, the utterances in the test set remained
the same across all sessions.

Table 7.1: Overview of the database: speakers, sessions, and total audio dura-
tion (hh:mm:ss) per speaker. All the signals in these sessions were acquired in
audible speech mode.

Speaker Sessions Total Duration
001 001-005, 007, 008 2:17:28
002 001-005, 007, 008 3:11:54
003 001, 002 1:00:02
004 001, 002, 005 1:09:26
005 001-003, 005 1:32:39
006 001-005 2:28:28
all 11:39:57

As described in detail in Chapter 4, to each audio signal belongs
one synchronization signal and eight EMG signals, each targeting one
of eight muscles in the face and neck.

7.2.2 Data processing

The first step in the data processing was cropping the EMG and the
audio signals using the synchronization signal. Then, the audio signal
was segmented using the MFA, to obtain the labels that were used to
perform the classification. The phonetic transcriptions were obtained
with a transcriber created by the Aholab Signal Processing Laboratory
using the SAMPA phone set. In this chapter, we refer to the phones
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using the International Phonetic Alphabet (IPA) for more clarity. The
silences at the start and the end of every utterance were discarded, but
the short pauses between words were kept (represented as “sil’). The
distribution of the phone labels is shown in Figure 7.1.

g j ny A B dr b fw®djxpmuslktr i | ns oea

0.2 0.4 0.6 0.8 1.0

Figure 7.1: Frequency of labels in the database, normalized with respect to the
most frequent label, [a]. The darker the shade, the higher the relative number
of frames labeled with that label.

Instead of using the raw EMG and audio signals, we extracted
features from them to use as input data. We calculated a set of TD
features as described in Section 3.2.2, with a rectangular window of
25 ms duration and a 5 ms step size.

The addition of temporal context information is essential as the
signals related to the movement of muscles are not necessarily simulta-
neous to the generated speech. This means that relevant information
might not be in the central frame but in the surrounding frames. To
incorporate temporal context information into each frame, a stacking
tilter was applied, which allows to combine the features of the current
frame with those of adjacent frames. We selected a stacking filter width
of 15 frames, which means that the actual frame is stacked with the 15
preceding frames and the 15 subsequent frames, so that information
from a total of 31 frames (i.e. 135 ms) was used. This resulted in a high-
dimensional feature vector for each frame, with a length of n-5- (2k+1),
where n = 8 is the number of EMG channels and k = 15 is the width
of the stacking filter, resulting in a total of 1240 features per feature
vector.

To perform phone classification using acoustic features for the pur-
pose of identifying the top performance of the classifier, we computed
MFCCs using a Hamming window and a filterbank of 30 filters, calcu-
lating 13 features for each window. The window length and the frame
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shift were identical to those used for TD feature extraction. As with the
EMG features, we applied a stacking filter with a width of 15 to each
frame, resulting in a feature vector of 403 audio features.

To reduce the dimension of the feature vector, we applied LDA, as
done in previous chapters. The maximum number of features allowed
for LDA is the number of classes minus 1, which in this case was 29
since there were 30 phone classes. In order to find the optimal number
of LDA features, we selected session 002 of each speaker and performed
a simple classification task on the EMG data following the model ar-
chitecture described in Section 7.2.3, using a batch size of 64 samples
and 10 epochs and iterating over 1 to 29 features. See Figure 7.2 for the
validation accuracy of each feature averaged over all speakers. Based
on this graph, we selected 17 features for all experiments described
further in this chapter.
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Figure 7.2: Validation accuracy (in %) per number of LDA features averaged
over session 002 of each of the six speakers. The solid line represents mean

accuracy, and the area above and below the line shows the standard deviation
range.
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7.2.3 Experiments
This section describes the classifiers we used for the experiments, and
how we applied cross-validation.

Baseline

To function as a baseline, a dummy classifier was used to achieve chance-
level accuracy. This dummy classifier chooses the most common class
(so the class with the most EMG frames). Due to the unbalanced label
distribution as shown in Figure 7.1, using a baseline that represents
random selection (in this case 3.33%) would not be fair.

Feed-forward neural network

The NN used to perform the phone classification consisted of one feed-
forward hidden layer with 34 nodes (double the number of inputs),
and an output layer with 30 nodes (the number of phone classes). The
activation function for the hidden layer was ReLU, while the output
layer had a softmax activation function. As a metric to measure the
multi-class classification accuracy of the network, the categorical cross-
entropy loss function was used. The network was trained using an
Adam optimizer and a learning rate of 1072. For a similar task in
previous work (Chapter 5), we have also compared other classification
models, such as a bagging classifier and a GMM. We learned that
a bagging classifier outperforms an NN when using small datasets,
but that a neural network is more effective when working with larger
datasets.

We performed a hyper-parameter search in order to find the opti-
mal batch size and number of epochs. Figure 7.3 shows the validation
loss for 40 epochs and three different batch sizes: 32, 64, and 128. It
can be seen that the batch size had no significant effect, so we selected
128, which had the shortest training time. Since the learning curve
flattens after about 20 epochs, we selected this number for the final
configuration.
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Figure 7.3: Validation loss per number of epochs averaged over session 002
of each of the six speakers, using a feed-forward neural network after LDA
reduction with 17 features. Results are shown for three different batch sizes.
The solid line represents the mean validation loss, and the area above and
below the line shows the standard deviation range.

Cross-validation

As described in Section 7.2.1, we split the data into 80% train and 20%
test sets. The test accuracy mentioned further in this chapter represents
results based on the test set. However, in the training phase, we used a
cross-validation procedure using 5 folds, and the average accuracy of
these folds is referred to as the validation accuracy.

7.3 Results

The mean validation and test accuracy for all experiments are shown
in Table 7.2. All the accuracy values mentioned in this chapter are
frame-based. For the results per speaker, see Figure 7.4. The average
time per model run was 13 minutes per session (without considering
the dummy classification experiments). It can be seen that there is some
variation between speakers, especially between speaker 006 and the
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other speakers. When speaker 006 is not taken into account, the mean
test accuracy based on EMG features increases to 38.12%

Table 7.2: Validation (including standard deviation) and test accuracy for all
experiments, averaged over all speakers and sessions.

Input features  Validation accuracy Test accuracy

None (baseline) 13.86+1.17% 13.10%
EMG-TD 37.5245.34% 35.98%
Audio-MFCCs 67.03+6.75% 69.68%

Input features
BN None

s EMG-TD
m  audio-MFCCs

Average Test Accuracy
]
&

3 4
Speaker

Figure 7.4: Test accuracy averaged over sessions per speaker for different
types of input features: none (baseline; most common class), EMG-TD, and
audio-MFCCs. The solid lines show the confidence intervals.

Figure 7.5 shows the confusion matrix for all phone classes for the
classification on the test set of EMG features. The matrix is normalized
by the true labels, to account for the imbalance of phone classes. The
matrix is organized by a shared phonetic feature, namely the manner of
articulation, resulting in the following phone groups: vowels ([a], [e],
[i], [o], [u]), semivowels ([j], [w]) and consonants. The consonants are
further divided into plosives ([b], [p], [t], [d], [k], [g]), fricatives ([B], [f],
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[0], [0], [s], [x], [¥]), affricates ([t[], [j]), nasals ([m], [n], [n]) and liquids
(11, [£], [c], [x]). The label “sil” refers to the short pauses between words.
These silences were predicted correctly in 28.94% of the cases. Table 7.3
shows the phone confusion pairs within each group, of cases where the
confusion was higher than the accuracy of the true label.
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Figure 7.5: Confusion matrix of the results of the test sets averaged over all
speakers and sessions for the EMG features. The blue dots show the phone
confusions as listed in Table 7.3.
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Table 7.3: Table of within-phone group confusions, showing instances where
the confusion between phones was higher than the accuracy of the true phone.

True Accuracy Predicted Confusion Group

i 25.18% e 32.86% vowels
u 37.57% 0 38.68%
n 4.50% n 6.13% nasals
£ 1.41% 1 6.32% liquids
r 1.570/0
T 9.02% r 11.31%
b 15.67% p 16.49% plosives
g 0.57% k 11.39%
t 3.43%
p 1.72%
d 1.13%
¥ 0.95% s 5.93% fricatives
X 2.35%
0 1.00%

7.4 Discussion and Conclusion

In the previous section, we presented the results of our phone classifica-
tion experiments. To start with, they showed that the mean chance level
is 13.10%, and the mean accuracy based on EMG features is 35.98% (see
Table 7.2), which implies that phones can to some extent be differenti-
ated using information from the muscles. We also presented the results
of the same experiment but this time using features from the audio
signals, which led to a mean accuracy of 69.68%. This result validates
the model architecture but is not used for analysis since it does not
contribute to the goal of this study.

We found a Pearson ’s correlation between the phone accuracy and
label counts of 0.79. We can observe in Figure 7.5 that the phones [a], [e],
[o] and [s] are predicted more often than other phones, to be recognized
as vertical lines in the confusion matrix in Figure 7.5. As can be seen
in Figure 7.1, these phone classes are the ones with the highest counts,
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so the false positive predictions in this case are most likely an effect of
the correlation. Using the same reasoning, we can observe that those
labels whose presence is rare, like [y], [j], [x] or [£], are almost never
predicted, what can be recognized as white columns.

When two phones that show confusion are members of the same
phone group, this confusion can be explained in terms of their phonetic
features. For example, as can be seen in Table 7.3, the vowel [i] is more
often incorrectly predicted as [e] than correctly as [i]. Similarly, the
vowel [u] is more often predicted incorrectly as [o] than correctly as [u].
These vowel pairs are indeed very close in their manner of articulation
and the difference in muscle movements is subtle enough to explain this
confusion. From the nasals group it is not surprising that the [n] and the
Spanish [n] show some level of confusion since the biggest difference
between those two phones is the movement of the tongue, which is
hard to capture with EMG. The same is true for the two different r s in
Spanish, the [r] and the more tongue-rolling [r], and the two different
1’s, within the group of liquids. When looking at the plosives, two
unvoiced-voiced pairs ([p]-[b] and [k]-[g]) show confusion among them,
which is as expected, since they only differ in the voicing feature, and
the EMG electrodes are unlikely to pick up on that. They also share the
place of articulation, so there is very little phonetic difference between
them. Similar confusion between voiced-unvoiced phone pairs was
also reported in previous work [54].

The analysis of the classification accuracy of phones based on EMG
signals shows that it is possible to derive certain information from
them, yet the results also revealed some level of phone confusion. More
specifically, confusion between two phones is more likely to occur when
they share the manner of articulation, or only differ in voicing. We are
confident that part of this issue can be addressed in developing an SSI,
for example by applying language models.

7.5 Contribution

This chapter contributes to the research community with an analysis
of phone confusion in EMG muscle activity between Spanish phones
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similar in manner of articulation, which is valuable information to know
when developing a SSI for Spanish speakers. The level of confusion
seems so significant that it must be addressed during development, for
example, by including a language model.

Part of this chapter has been published as:
Salomons, Inge; Del Blanco, Eder; Navas, Eva; Herndez, Inma. “Span-
ish Phone Confusion Analysis for EMG-Based Silent Speech Interfaces”.

In: INTERSPEECH 2023. ISCA, Aug. 2023, pp. 1179-1183. DOL
10.21437 /Interspeech.2023-1881.
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Statistical Analysis of EMG Patterns

This chapter analyses the muscle activity of eight muscles in the face and
neck during speech production, by statistically modeling the activity
levels of EMG signals acquired in different contexts. More specifically,
using a generalized additive model (GAM), the root mean square (RMS)
patterns of EMG signals acquired by different speakers (typical or ala-
ryngeal), during multiple sessions and in two different speech modes
(audible vs. silent), are compared. The results show that EMG signals
of silent speech have significantly higher RMS levels than EMG signals
of audible speech, suggesting that the speaker compensates for the
lack of auditory feedback by articulating more. However, a subsequent
qualitative comparison with the patterns associated with alaryngeal
speech (showing lower RMS levels) suggests that the audible speech
of laryngeal speakers may be more suitable for developing an SSI for
alaryngeal speakers. Further analysis into the different muscles that
the EMG signals were acquired from, and a comparison of phonetic
outputs, indicate that a GAM analysis can be useful in understanding
the relationship between muscle use and speech production.

105



Chapter 8. Statistical Analysis of EMG Patterns

8.1 Introduction

Most SSIs are trained on parallel EMG and audio signals and then
tested with EMG signals in silent mode from laryngeal speakers [71,
99]. However, differences between EMG signals from audible and
silent speech have been reported, and are attributed to the lack of
auditory feedback in the case of silent speech, making this approach
rather challenging [35, 99-102]. To overcome this discrepancy, in the
current state-of-the-art, SSIs have been trained on silent speech instead,
achieving a WER of 28.8% for direct EMG-to-speech in English [62]
and 95.5% accuracy when classifying 10 Chinese digits [67], using data
from a single speaker. For English alaryngeal speakers, a study has
shown that EMG-based alaryngeal speech recognition is feasible, with
a 10.3% average word error rate [40]. However, although models using
voice conversion exist to restore speech for Spanish alaryngeal speakers
[10, 103], there is a lack of studies focusing on EMG-based SSIs for this
group of speakers.

The purpose of this chapter is to gain more insight into muscle
activity in different contexts, to ultimately get closer to developing
an SSI for alaryngeal speakers. We used the EMG signals from the
new database we developed, described in Chapter 4. We calculated
the RMS of each signal to represent the activity pattern of the muscle
[31] and used a statistical method that can identify non-linear patterns
(GAM; [104]) to study the effect of different variables on the RMS
patterns of the EMG signals. Our aim was to identify how individual
muscles used for speech production compare to each other, and if it
matters how the speech was produced (audibly or silently), by whom
(laryngeal or alaryngeal speaker), and how small differences in the
(intended) phonetic output (Spanish noche compared to leche) affect the
EMG signals.

The next section provides an overview of the data used for the
experiments in this chapter, how it was processed, and an explanation
of GAMs (Section 8.2). Then, we list the results of the experiments in
Section 8.3, and discuss them in Section 8.4.
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8.2 Methods

In this section, we provide details on the dataset we used in this chapter
(8.2.1), how we processed the data (8.2.2), and the model we used to
perform the experiments (8.2.3).

8.2.1 Data overview

The data used in this chapter is part of the ReSSInt database, namely a
list of 100 common Spanish words (corpus 002; see Section 4.2.1) that
was recorded by nine speakers multiple times, either in audible or silent
speech mode. Out of the nine speakers, six were laryngeal speakers and
three were speakers who had undergone a laryngectomy (alaryngeal
speakers). In total, there are 48 repetitions of each word, namely 27
repetitions in audible mode, 17 repetitions in silent mode by laryngeal
speakers, and 4 repetitions in silent mode by alaryngeal speakers. Every
repetition refers to one session, in which all 100 words were recorded
once. For each word there is one EMG signal for each of the eight
muscles: anterior belly of the digastric (ABD), depressor anguli oris
(DAO), depressor labii inferioris (DLI), levator labii superioris (LLS),
masseter (MAS), risorius (RIS), stylohyoid (SLH), and zygomaticus
major (ZYG). In summary, there are 38,400 signals in the selected data,
namely eight EMG channels times 100 words times 48 repetitions.

8.2.2 Data processing

The first step of data processing is filtering out all signals that showed
values below -30 or above 30 millivolts (mV). When a signal has values
below or above these values, it means it is saturated and is often a result
of insufficient contact of the electrode with the skin. We grouped the
dataset in combinations of speakers, sessions, and channels beforehand,
so that if a channel showed unreasonably high mV values for one or
more words, all the words in that session were removed. After filtering,
there were 28,574 signals left, meaning that 25.6% of the total available
signals were filtered out. Per group, these percentages are 23.3% for
audible speech, 27.2% for silent laryngeal speech, and 34.4% for silent
alaryngeal speech. Table 8.1 shows the number of remaining signals per
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channel and speech mode, as well as the total. As can be seen, the DLI
channel suffered the most loss by filtering and even resulted in zero
signals in the case of alaryngeal speakers. This channel is located under
the mouth, and the upper electrode was often affected by the arching of
the lower lip, resulting in the detachment of the electrode. When one
or more electrodes are not attached completely, this is reflected in the
EMG signal with high amplitudes.

Table 8.1: Number of EMG signals per muscle and in total after filtering, per
group. The numbers before filtering are calculated by multiplying the number
of repetitions (sessions) by the number of words by the number of muscles
(channels). The uneven number in the audible data set results from four
missing words in the original data set.

Total Audible Silentlarynx Silent no larynx

Before 38,368 21,568 13,600 3,200
SLH 4,696 2,596 1,700 400
MAS 4,596 2,496 1,700 400
ABD 4,397 2,497 1,600 300
zZYG 4,196 2,396 1,400 400

RIS 3,996 2,396 1,300 300

LLS 3,298 1,898 1,200 200
DAO 2,698 1,798 800 100

DLI 697 497 200 0
After 28,574 16,574 9,900 2,100

In the second step, the RMS of the mV values for each signal was
calculated with a rectangular window size of 25 ms and a window shift
of 5 ms.

During the third and final step, each signal was time-normalized
between 0 and 1, to account for varying speech rates. The average signal
duration was 1.57 seconds (1.56 seconds audible; 1.61 seconds silent;
1.42 seconds alaryngeal) with a standard deviation of 0.42 seconds.
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8.2.3 Experiments

For the experiments, we used GAM [104], which is a non-linear regres-
sion method that can be used to model non-linear patterns. A GAM
estimates the relationship between the response variable and each of
the predictor variables using non-linear smooth functions. In this study,
the responsible variable is always the time-normalized RMS function
of the EMG signal, and the predictor variables depend on the task and
can be muscle, word, or speech mode. The use of non-linear smooth
functions allows for more flexibility than a traditional linear regression
model. Consequently, GAMs are able to capture more complex patterns
while simultaneously measuring the significance of potential effects or
differences. To prevent overfitting the training data, a penalty factor
is included, considering each smooth function’s effective degrees of
freedom (EDF). Higher EDF means a more complex or elaborate smooth
function, which can be penalized to improve the model’s generalization.
In contrast to a linear regression model, visualization is required to
interpret the patterns.

For this chapter, we used the bam function from the mgco library
[104] in R [105] to fit the models and the itsadug library [106] to interpret
the results. We followed the approach described in [107] for model
fitting.

8.3 Resulis

In this section, we report the effects of the different variables that each
EMG signal differs in, namely word (8.3.1), speech mode (8.3.2), and
muscle (8.3.3).

8.3.1 Effect of word

In the experiments following this section, we have included all of the 100
words. However, before proceeding to do that, it is essential to ensure
the EMG data collected adequately is able to distinguish between words
as well. For this validation step, we selected a minimal pair, namely the
words noche [notfe] and leche [letfe], which differ in pronunciation in the
first part and are the same in the last part. In this experiment, we fitted
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a model with the data from only these two words, assessing whether
a significant difference was captured at the beginning of the word
pronunciations (i.e. where these differed in their pronunciation). Our
results show a difference in the activation pattern in general (averaged
across all muscles; see Figure 8.1), but also specifically for muscles LLS
(Figure 8.2a), DAO (Figure 8.2b), ABD (Figure 8.2c), RIS (Figure 8.2d)
and ZYG (Figure 8.2e).
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Figure 8.1: RMS patterns for noche (blue) and leche (red) on the left, and the
difference plot on the right. The time window of the significant difference is
0.16 - 0.60.

In sum, these results show that GAMs are adequately able to cap-
ture differences in the EMG patterns, and therefore can be suitably used
to compare different groups in the following sections.

8.3.2 Effect of speech mode

To understand the effect of speech mode (audible or silent, for the
laryngeal speakers), we fitted a model with the RMS values as the
response variable dependent on potential non-linear patterns over time.
We explicitly assessed the difference between the time-based patterns
for the two speech modes via a binary difference curve [107].

110



The results of this model show that the binary curve reflecting the
difference between audible speech and silent speech was significant.
Figure 8.3 shows the two RMS patterns and the difference plot showing
where the patterns significantly differ. Clearly, the pattern for silent
speech shows higher RMS values than for audible speech, with the
difference being largest (and significant) during the first third part of
the word pronunciation.

As explained in Section 8.2.1, each EMG signal belongs to one of
three groups: the speakers with larynx (laryngeal speakers) produced
speech either audibly or silently, and the laryngectomized (or alaryn-
geal) speakers spoke only in silent mode.

We fitted a second model, where we assessed the difference be-
tween the alaryngeal speakers and the two speech modes of the laryn-
geal speakers, again via binary difference curves. Figure 8.4 shows
the smoothed RMS patterns over time for each group. Although these
patterns seem to appear different, the results of the fitted model show
no significant difference for both comparisons (audible vs. alaryngeal:
p = 0.195; silent vs. alaryngeal: p = 0.260). However, the lack of a
significant difference is caused by the low number of speakers in the
alaryngeal group (only three speakers). Figure 8.4 shows that the pat-
tern for the alaryngeal group is much closer to the audible speech than
the silent speech of the laryngeal group.

8.3.3 Effect of muscle

We were also interested in the RMS patterns for each muscle in the two
different speaking modes. For this experiment, we exclusively used the
data from the speakers with a larynx and fitted a model where for each
of the eight muscles, the speaking modes were contrasted. The results
show that, except for RIS and SLH, the patterns differ significantly along
part of the trajectory between the audible and silent production in the
EMBG signals of the muscle. In all cases, the RMS was higher for the
silent production. Figure 8.5 and Figure 8.6 visualize the RMS patterns
of each muscle in both modes and the difference between them.

111



Chapter 8. Statistical Analysis of EMG Patterns

Noche and Leche -LLS Difference Noche and Leche - DAO Difference
8
3
o Q o -
8 8 8
3 g 2 3 2 g
© x 2
€ 8 <
] e 8 ° @ e 8 38
£ s - z 8 5 s s
e 5 8 © e 5 8 g
. . &
° iz ° T s o :
g £ d g fdg J
8 H 2 E H 3 §
g ] 8 : ] g
T T T T T 1 = T r T T T T 1 L T T T T 1 = r T T T T 1
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Time Time Time Time
(a) LLS: 0.17 - 0.63. (b) DAO: 0.08 - 0.67.
Noche and Leche - ABD Difference Noche and Leche - RIS Difference
3
2
8 3 g
8 o 8 g @
S 8 a = 2
[4 ['4
£ g /\ e ° /\
o : 8 & 2 c 8
z 8 HI z g H \ £
2 § 8 o 2 § g o H
E- - b
° : ®3 © ;@ 3
3 :u g s fou g
g g | 8 z 8 8
% H 8 v H K b
r T T T 1= Y or T T T 1 r T T T 17 T T T T 1
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Time Time Time Time

(c) ABD: 0.19 - 0.50. (d) RIS: 0.19 - 0.25; 0.37-0.50.
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Figure 8.2: RMS patterns for noche (blue) and leche (red) on the left, and the
difference plot on the right, for the muscles LLS, DAO, ABD, RIS, and ZYG.
The numbers in the description show the time window(s) of the significant
difference.
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Figure 8.3: RMS patterns for audible speech (red) and silent speech (blue) on
the left, and the difference plot on the right. The time window of the significant
difference is 0.11 - 0.37.
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Figure 8.4: RMS patterns over time for each of the three groups. There is no
significant difference between alaryngeal speech (green) and the two types of
laryngeal speech: audible (red) and silent (blue).
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(blue) mode for speakers with larynx, for the muscles MAS, RIS, SLH and
ZYG.
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8.4 Discussion and Conclusion

This chapter addresses several questions regarding the properties of
EMG signals during audible and silent speech production among Span-
ish speakers. Through the analysis of EMG data collected from both
laryngeal and alaryngeal speakers, the chapter aims to identify differ-
ences in muscle activation patterns in different contexts.

Our analysis reveals a significant difference in RMS patterns be-
tween audible and silent speech modes of laryngeal speakers, with
higher RMS values for silent speech. This finding is in line with previ-
ous studies, which have also reported differences between these two
speech modes [35, 99-102]. We believe that due to the absence of au-
ditory feedback, the speaker tries to compensate by articulating more
when speaking silently. When extending this analysis to the individual
muscles, it appears that this difference is present in all muscles except
RIS and SLH.

Further analysis reveals no significant difference between audible
and silent speech from laryngeal speakers in comparison to alaryngeal
speech. However, given the limited data from alaryngeal speakers, an
analysis with more data is required before drawing any representative
conclusions. Interestingly, the pattern of alaryngeal speech seems to
be more similar to that of audible speech from laryngeal speakers as
opposed to silent speech. If this trend proves to be significant in a
larger dataset, it could mean that using audible speech might be a better
approach to training an SSI for alaryngeal speakers than using silent
speech from laryngeal speakers.

We were rather strict in our filtering process, as we decided to
remove all signals of a channel in one session if one or more signals of
that channel showed abnormally low or high mV values. We made this
decision to make sure that all signals in the data used are of good quality,
but we acknowledge that we might have filtered out good signals as
well. Nevertheless, we were able to identify clear significantly different
patterns, even while being relatively conservative in our data selection
process.

For future research, it could be interesting to study the RMS pat-
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terns of signals of different phoneme groups. The first experiment in
this chapter, which compared a minimal word pair to evaluate the suit-
ability of using GAMs, already showed that this kind of analysis can
be used to highlight which muscles are activated based on differences
in the phonetic output. Further analysis of the activity of one or more
muscles in specific contexts might be useful to identify potential rela-
tionships between muscle use and the production of specific sounds.
Similarly, it would be worth it to evaluate if the potential relationships
are similar across speakers, or whether each speaker has a unique way
of using their muscles to produce certain phone groups.

8.5 Contribution

This chapter uses GAM to analyze EMG signals during speech. It
finds higher EMG activity in silent speech compared to audible speech,
suggesting compensatory muscle use. Furthermore, audible speech
patterns in laryngeal speakers are potentially better suited for SSIs for
alaryngeal speakers. It also shows a promising method to study more
closely individual muscle use.

Part of this chapter has been accepted for publication:
IberSPEECH 2024. "Analyzing Speech Muscle Activity Using a Gener-

alized Additive Model". Salomons, Inge; Herndez, Inma; Navas, Eva;
Wieling, Martijn. Accepted for publication.
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Conclusion
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General Discussion and Conclusion

In this thesis, we have described a new database that we developed, and
experiments we performed with this data. The database was the first
important step in the development of an EMG-based SSI for alaryngeal
Spanish speakers, and the experiments aimed at understanding the
challenges that arise in the development of such a technology.

In the field of EMG-based SSIs, major advances have been made
since the first study almost four decades ago. It started with the suc-
cessful identification of speech-related information in EMG signals [43].
Currently, speech can be generated from EMG signals with a WER
of 28.8% using a single-speaker model trained on nearly 20 hours of
data from a typical male English speaker [62]. More research is needed
to determine whether it is possible to lower that error rate using a
multi-speaker model trained on less data from a variety of speakers
(including those who experience speech difficulties) speaking different
languages.

To develop an SSI for our target group, alaryngeal Spanish speak-
ers, there was not yet a database available. For this reason, we first
conducted a pilot experiment to find the optimal EMG electrode setup
(Chapter 3). The study analyzed the contribution of specific muscles in
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the face and neck to the performance of a phone classifier. Building on
previous research, we initially targeted 14 muscles and subsequently
identified eight key muscles based on their contributions. The final
setup consists of eight bipolar single-electrode pairs, each targeting one
of the muscles ABD, DAO, RIS, LLS, MAS, ZYG, DLI and SLH. The
DLI and SLH are new additions compared to other studies in this field,
whereas the other six have been frequently used as well.

Although we believe we made the right choice with the information
available to us at the time of this pilot study, we encourage other re-
searchers in this field to explore other options as well, such as electrode
arrays, the effect of speaker differences, and facial asymmetry.

The development of the ReSSInt-EMG database, involving a record-
ing procedure and regular data quality assessments, resulted in a collec-
tion of 22.5 hours of EMG and speech signals (Chapter 4). These signals
were recorded across various contexts, in terms of speaker type, speech
mode, and linguistic content. The database is a major contribution to
the field because it allows for the extension of SSI development for
non-English speaking people with speech difficulties.

Despite the precautions that were taken to ensure data quality,
occasional deviations from the intended quality standard may have
occurred due to the complex and sensitive nature of EMG data acquisi-
tion.

Validation experiments conducted on the ReSSInt-EMG database
aimed to establish the efficacy of the acquisition setup (Chapter 5).
By comparing phone classification results with those from a public
English speech and EMG database, we validated the robustness of our
data acquisition procedure. Despite differences in experimental setup
and languages, our results demonstrated comparable performance,
affirming the validity of our new database.

Further analysis addressed an important concern in EMG-based
SSI research, namely the effect of variability across speakers and ses-
sions (Chapter 6). This phenomenon of inter-speaker and inter-session
variability is inevitable and is attributed to factors such as electrode
placement, speaker physiology, or environmental conditions. The main
challenge it poses is the development of a multi-speaker interface, for
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which it needs to be able to generalize. However, even though we found
that variability had a negative effect on the classification performance
using our data, it appeared that increasing the amount of training data
downsized this effect.

Moreover, we performed a phone confusion analysis to assess
the potential of using EMG signals to differentiate between speech
sounds that are phonetically similar (Chapter 7). For example, in the
case of [p] and [b], phonetically speaking, the only difference is the
voicing feature. Without this information, will the interface be able to
pick up on what might be minuscule differences in muscle use when
producing these sounds? The same can be asked for sounds that differ
only in tongue position, of which there is no data, for example, the [r]
and [r]. For English, a study already confirmed this assumption and
revealed confusion occurring mostly between voiced-unvoiced pairs
[54]. Our analysis shows that also for Spanish, phone confusion can be
a challenge for EMG-to-Speech research, but we are confident that this
can be overcome.

Lastly, muscle activation patterns of EMG signals acquired in dif-
ferent conditions were compared, using a statistical method that can
model non-linear patterns (Chapter 8). It revealed a higher muscle
activity in silent speech compared to audible speech. We attributed this
to the lack of acoustic feedback, and that the silent speaker is making
up for this by articulating more. Notably, alaryngeal (silent) speech
exhibited similarities to audible speech from laryngeal speakers instead
of silent speech. However, we had very little data available for alaryn-
geal speech, so more analyses are needed to confirm this. In general,
we believe that each dataset is unique and that this kind of analysis is
crucial to understanding the data’s characteristics.

Overall, our findings underscore the complexity of recognizing
speech from EMG signals and highlight the importance of comprehen-
sive data collection, thorough validation and quality assessments, and
in-depth analyses to advance the field of SSIs. Further research address-
ing inter-speaker variability and phonetic nuances will be instrumental
in realizing the full potential of EMG-based SSIs for Spanish alaryngeal
speakers.
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Appendix A List of VCV words

Appendices

a e i o u
p atapata atepeta atipita atopota atuputa
mb | atambata | atembeta | atimbita | atombota | atumbuta
t atatata ateteta atitita atotota atututa
nd | atandata | atendeta | atindita | atondota | atunduta
k atakata ateketa atikita atokota atukuta
ng | atangata | atengueta | atinguita | atongota | atunguta
S atachata | atecheta atichita | atochota | atuchuta
ji atallata atelleta atillita atollota atulluta
f atafata atefeta atifita atofota atufuta
B atabata atebeta atibita atobota atubuta
T atazata ateceta aticita atozota atuzuta
D atadata atedeta atidita atodota atuduta
] atasata ateseta atisita atosota atusuta
X atajata atejeta atijita atojota atujuta
G atagata | ategueta | atiguita | atogota atuguta
m atamata atemeta atimita atomota | atumuta
n atanata ateneta atinita atonota atunuta
J atafiata atefieta atifiita atofiota atufiuta
1 atalata ateleta atilita atolota atuluta
L atayata ateyeta atiyita atoyota atuyuta
r atarata atereta atirita atorota aturuta
Ir atarrata aterreta atirrita atorrota aturruta

Table 1: List of VCV words. The top row shows the vowels (V) and the left
column the consonants (C) in SAMPA notation. The resulting combinations in
reading format are the words that were presented to the speaker. The plosives
/b/,/d/,and /g/ are induced by an extra nasal sound in front of the plosive
sound.
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Appendix B List of 100 most useful Spanish words

dia | mayo | coche | otofio | entrar autobus | adelante
dos | nifio | enero | padre | hombre | derecha | bicicleta
fin ocho | error | perro idioma | domingo | calendario
mes | seis fruta | primo | inicio escuela | diciembre
pan | tres | julio salir jueves | familia invierno
sol | vida |junio | siete lluvia febrero | izquierda
tio vino | leche | tarde mafiana | hermano | mediodia

uno | abril | lugar | abuelo | martes | octubre | miércoles

agua | arbol | lunes | agosto | planta | pescado | noviembre

café | aviéon | madre | camién | pueblo | préximo | primavera

casa | barco | marzo | ciudad | sdbado | sobrina septiembre

diez | calle | mujer | comida | semana | trabajo temporada

flor | calor | nieta | cuatro | tiempo | verdura | transporte

frio carne | noche | detrds | verano | viernes

hija | cinco | nueve

Table 2: List of 100 most useful Spanish words sorted alphabetically and by
word length.

Appendix C Detailed database information

Table 3 shows detailed information about the ReSSInt database. It lists
which sessions were recorded per speaker, and the duration of signals
for each corpus included in that session. It also shows totals per session,
per speaker, and for all speakers and sessions (in the end). Information
about the kind of content that each corpus contains can be found in
Table 4.1. The explanations of the abbreviations are as follows:

* NP:A = non-parallel audible; duration of audible signals in a
session where each signal of this corpus was only recorded in
audible mode.

¢ NP:S = non-parallel silent; duration of silent signals in a session
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where each signal of this corpus was only recorded in silent mode.

* P:A = parallel audible; duration of audible signals in a session
where each signal of this corpus was recorded in both modes.

¢ P:S = parallel silent; duration of silent signals in a session where

each signal of this corpus was recorded in both modes.

Table 3: Detailed database information. Duration format is (hh:)mm:ss.

Speaker Session Corpus NP:A NP:S P:A P:S Total
001 001 001 2:36 —— — —
002 —— —— e —
003 427 - e . 19:24
004 1221 —-— —— —
002 001 2:24 —— — —_
002 1:57 —— e e
003 431 - . e 21:50
005 12:58  —— - —
003 001 2:15 —— —_— —
002 1:50 —— — —_
003 4:42 - e . 21:02
006 1215  —- —— —
004 001 2:56 —— - —
002 2:27 —— —— —
003 521  —- — e 24:43
007 13:59  —- —— e
005 001 —— —— 2:54 2:57
002 —— —— 2:10 2:11 21:01
003 —— —— 5:19 5:30
006 001 —— 3:09 —— —
002 —— 2:12 e —
003 . 5:37 o e 28:56
004 —— 17:58  —— ——

Continues on next page
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Table 3 — continued from previous page

Speaker Session Corpus NP:A NP:S P:A P:S Total
007 002  —— e 203 2:02
003  —— e 508 545 2501
008 1003 —-— . o
008 002  —-— e 227 2:16
003 - e 520 603 2543
009 9:37 —— —— ——
010 010  —-— e 031  1:12
011 —- e 631 1439 2253
011 010  —-— e 030  1:07 _
012 - e 633 144p 202
012 010  —-— e 027  0:58
013 —— . 602 1253 2020
013 010  —-— e 029  1:00
014 - o 601 1301 2081
014 010  —-— e 026  0:58
015 - e 536 1159 1009
015 010  —-— e 026  0:56
016  —— e 505 1138 102D
Total  1:46:39 28:56  1:04:18 1:51:47 5:11:40
002 001 001  2:19  —— . .
002 1:29 —_— —— .
003 550  —— . . 29:09
004 1931 —-— o o
002 001  —-— . . .
002 255  —— e .
003 722 e . 33:25
005  23:08 —— o .
003 001 322  —-— o .
002 2:34 — e .
003 639  —— e . 28:28
006 1553  —— e .
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Table 3 — continued from previous page

Speaker Session Corpus NP:A NP:S P:A P:S Total

004 001 4:39 —— —— ——
002 3:41 —— —— ——
003 8:13 —— —— ——
007 20:27 —— —— ——

005 001 —— —— 4:29 4:32
002 —— —— 3:00 3:07 31:52
003 —— —— 7:28 9:16

006 001 —— 4:22 —— ——
002 —— 3:11 —— ——

37:00

003 —— 7:57 —— —— 42:50
004 —— 27:20 —— ——

007 002 —— —— 3:53 3:36
003 —— 8:54 8:54 40:04

008 14:47 —— —— ——

008 002 —— —— 3:42 3:04
003 —— —— 8:33 8:10 36:51
009 13:22 —— —— ——

Total  2:36:11 42:50  39:59  40:39  4:39:39

003 001 001 4:28 —— —— ——
002 3:03 —— —— ——

003 5:55 —— — . 32:05
004 18:39 —— —_ ——

002 001 255 - . .

Ry o S )

003 4:36 —— —— ——
005 14:39 —— —— ——

005 001 —— —— 3:01 3:12
002 —— —— 2:18 2:50 22:06
003 —— —— 5:08 5:37

006 001 —— 2:52 —— ——
002 —— 2:27 ——

Continues on nea%? #LISge
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Table 3 — continued from previous page

Speaker Session Corpus NP:A NP:S P:A P:S Total

003 —— 5:18 —— ——
004 —— 17:08 —— ——

Total 57:06  27:45 10:27  11:39 1:46:57

004 001 001 —— —— —— ——
002 2:23 —— —— ——

03 616  —— . . 2823
004 1944 —— - -

002 001 244 - . .

RS o S S

003 5:43 —— —— ——
005 18:22 —— —— ——

005 001 —— —— 2:42 2:32
002 —— —— 2:22 2:13 21:17
003 —— —— 5:28 6:00
006 001 —— 3:08 —— ——
002 —— 2:18 —— ——
003 —— 5:58 —— ——
004 —— 20:31 —— ——

Total 57:51  31:55 10:32  10:45 1:51:03

31:55

005 001 001 3:01 —— —— ——

002 2:33 —— . o 29:04
003 551  ——  —— -
004 17:39  —— e .

002 001 331 - -
002 214  —— -
03 538 - o . 2813
005 1650 ——  —— -

003 001 341 - = -

N e T T my

003 5:14 —— —— ——
006 12:15 —— —— ——

Continues on next page
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Table 3 — continued from previous page

Speaker Session Corpus NP:A NP:S P:A P:S Total

004 001 2:57 —— —— ——
002 2:46 —— —— ——

03 610 ——  —— 220
007 13:27 —— —— ——

005 001 —— —— 2:52 3:13
002 —— —— —— 2:32 20:12
003 —— —— 5:26 6:09

006 001 —— 2:51 —— ——
002 —— 2:20 —— ——
003 —— 6:25 —— —— 31:49
004 —— 20:13 —— ——

007 002 —— —— 3:13 3:27

003 —— —— 6:05 7:06 28:43
008 8:52 —— —— ——

008 002 —— —— 2:50 2:52
003 —— —— 5:43 6:34 27:02
009 9:03 —— —— ——

Total 2:03:59 31:49 26:09 31:53 3:33:50

006 001 001 2:30 —— —— ——
002 2:03 —— —— ——

003 6:19 —— . e 31:15
004 20223 —— . o
002 001 245 - . .
. - T 33:54

003 7:14 —— —— ——
005 21:42 —— —— ——

005 001 —— —— 3:04 3:36
002 —— —— 2:13 2:28 28:06
003 —— —— 8:29 8:16

006 001 —= 3:42 —— ——
002 —— 3:08 —— ——

003 —= 7:08 —— ——
Continues on next page

34:32
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Table 3 — continued from previous page

Speaker Session Corpus NP:A  NP:S

P:A P:S Total

004 —— 20:34 —— —

Total 1:05:09 34:32 13:46 14:20 2:07:47
007 006 001 —— —— e .

002 —— 4:14 —— e

03 - 1207 —— - 46:44

004 — 30:23 — ——

009 001 —— 2:48 — e

002 —— 2:36 — ——

03 - 1011 —— - 48:47

005 —— 33:12 —— .

Total —— 1:35:31 —— —— 1:35:31
008 006 001 —— 2:44 — —

002 —— 2:08 — —

03 - 629 - 32:47

004 — 21:26 —— ——

Total —— 32:47 —— —— 32:47
009 006 001 —— 3:40 — ——

002 —— 2:47 —— e _

03 - 720 —— 36:48

004 —— 23:01 —— e

009 001 —— 3:42 —— .

002 — 2:00 — .

03 - 726 —— - 36:51

005 — 23:43 —— e

Total —— 1:13:39 —— —— 1:13:39

Total 9:26:55 6:39:44 2:45:11 3:41:03 22:32:53
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Summary

A silent speech interface (SSI) has the potential to restore the ability to
speak for those who have lost their voice. This machine-learning-based
interface translates biosignals from the speech production system other
than speech itself into actual speech signals. These biosignals can be
acquired from the brain, the tongue, or the muscles, with techniques
called electroencephalogram (EEG), permanent magnet articulography
(PMA), and electromyography (EMG) (respectively). Silent speech
refers to the act of articulating as if a person were speaking, but without
producing any sound. So, biosignals can correspond to either silent
speech or audible speech. This thesis focuses on the research questions
and challenges related to developing an SSI based on activity from
the articulatory muscles (EMG signals). For example, first, it is essen-
tial to find the most optimal method of acquiring the signals, such as
the selection of the EMG electrode locations. Then, it would be most
helpful to know the impact of speaker variability, or the absence of
information from the tongue and vocal cords, on the model’s predic-
tion performance. By answering these questions, this thesis aims to
fill the research gap specifically related to EMG-based SSIs developed
for Spanish alaryngeal speakers. An alaryngeal speaker has no larynx,
which is a part of the speech production system that contains the vocal
cords, an essential element of typical speech production. To help them
communicate again is the ultimate goal of the research described in this
thesis.

Part I of this thesis provides an elaborate background of all the topics
related to EMG-based SSIs for alaryngeal speakers.

Chapter 1 contains a brief thesis introduction, providing a de-
scription of the research goal and questions of this thesis, and a thesis
guide.

Chapter 2 explains the basis of speech production, alaryngeal
speech, SSIs, and EMG. This chapter also contains a literature overview
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of studies related to EMG-based SSIs. As shown in the chapter, there
is a lack of research focused on the Spanish language and the target
group of alaryngeal speakers. However, this is not the case for the
English language and typical speakers. For example, during my PhD
trajectory, a model was made available by other researchers with which
fairly intelligible speech was converted from EMG signals of audible
and silent speech produced by an English typical speaker.

Part II of this thesis presents a new database of Spanish speech and
EMG signals, and the collection and validation method.

Chapter 3 describes a pilot study we performed to find the optimal
acquisition setup. It aimed to find the best type, number, and loca-
tions of EMG electrodes. For the experiments described in this Chapter
(and Chapters 5- 7), we did a phone (speech sound) classification task.
First, we calculated a set of five frame-based features from the raw
EMG signals known as time-domain (TD) features, which have been
extensively used in related studies. Then, we automatically transcribed
the speech signals, so that for each frame we also had a phone label.
With the EMG features and the phone label as input information of
a varying number of words or sentences (depending on the specific
experiment), we trained the classifier. In the testing phase, we only
provided the EMG features as input, so that the trained classifier had to
predict the corresponding phone labels based on the relations between
certain features and phone labels it learned during training. We mea-
sured its performance using the accuracy measure, which represents
how often the predicted label was accurate (in percentage). In this
chapter about the pilot study, we compared the accuracy values for two
types of electrodes, but also for different locations all over the face and
neck. Based on these comparisons, we selected a setup consisting of
eight bipolar single-electrode pairs, where each electrode pair targets a
specific muscle in the lower facial or upper neck area.

Chapter 4 presents the database, which contains signals belonging
to words or sentences, spoken audible or silently. We collected over
22 hours of data in total from six typical speakers and three alaryn-
geal speakers. The amount of sessions differs per speaker, but all of
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them recorded a base set of sessions. This chapter also describes the
complete acquisition procedure, for example, the 3D mask we used
for each speaker to reduce session variability, and provides some data
examples.

Chapter 5 describes a study we performed to ensure that our acqui-
sition procedure was valid, and compares classification performance
with signals from our database and that of an English reference database.
When predicting the phones corresponding to parts of EMG signals
using a simple classifier, the test accuracy of one long session from the
reference database was 28.32%, considering 40 English phone classes.
Repeating this experiment with nine sessions from our Spanish database
with approximately the same duration, the average test accuracy we
reached was 40.85%. Even though the Spanish language has 30 phone
classes, which explains part of the higher accuracy, we were confident
that we could continue acquiring data with the selected acquisition
setup.

Part III of this thesis focuses on assessing the potential and limitations
of developing an SSI with our newly acquired data.

Chapter 6 addresses a well-known limitation of SSI development,
namely the impact of variability between different speakers or different
data acquisition sessions from the same speaker. Due to this variability,
there can be a strong dependency of the model on the data it was trained
on. In this chapter, we describe a study that consisted of experiments in
which the train and test data of the phone classifier were from the same
speaker or session, or not. We started with data from the same session
(which automatically means from the same speaker) and repeated this
experiment for 16 sessions from six different speakers. This resulted in
a maximum test accuracy of 50.54%. The data in this session consists of
audible speech signals and their corresponding EMG signals. Then, we
trained the classifier with data from other sessions of the same speaker,
allowing us to increase the amount of training data. It appeared that
when the classifier was trained on another session, the test accuracy
drastically lowered to a maximum accuracy of 23.40%. However, there
was a slight improvement when training data was added. With the
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addition of two more training sessions, the maximum test accuracy
was 30.41%. The effect of session variability is concerning, but it is
promising to know that increasing the amount of data can be a solution.
When repeating the last experiment, but using training data from one
speaker and testing data from another, the maximum test accuracy was
reduced even further to 20.43%. It should be noted that the accuracy can
vary depending on the specific train-test data combination, implying
that some speakers and sessions are better matches than others. Either
way, we found that speaker variability also has an impact on our data’s
potential, and should be considered in the final SSI development.

Chapter 7 aims to identify the effect of similarities between speech
sounds on the ability to predict speech from the EMG signals of those
sounds. In Spanish, there are seven groups of speech sounds, and each
group has a particular manner of articulation. Within the plosives,
minimal pairs exist where the only difference is realized by adding
vibration with the vocal cords (called voicing), or not. These are [b-p],
[d-t], and [g-k], where the first in each pair is voiced and the second
is unvoiced. In other cases, the only difference can be the position
of the tongue, as in [r-r]. Also within the groups of vowels, some are
minimally different from each other, like [i-e]. Since EMG signals do not
contain information related to the use of the tongue or the vocal cords,
some confusion between sounds with minimal articulation difference is
to be expected. Therefore, we performed a phone confusion analysis,
which is the study described in this chapter. Again, we did phone
classification experiments, but this time we looked with more detail at
the phone predictions. The results showed that for some minimal pairs,
the confusion was indeed higher than the accuracy. For example, the [u]
was more often predicted inaccurately as [o] (38.68%) than accurately as
[u] (37.57%). However, it is important to add that some of the confusion
can be explained by a high correlation we found between the phone
accuracy and label count, which resulted in the most common phones
being predicted relatively more often as well. The main takeaway of this
study it could be useful to not look at the general SSI performance but
at the contribution of individual phonetic features, and add a linguistic
component such as a language model.
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Chapter 8 presents a statistical analysis of EMG signals to get a
better understanding of muscle activity in different contexts. Using a
non-linear regression method called generalized additive model (GAM),
we compared the activity patterns of typical and alaryngeal speakers,
audible and silent speech, and different words. First, we concluded
that the method can be suitable for future research into the relationship
between muscle use and specific sound production, based on the find-
ing that a difference in muscle activity showed up at the part where
two analyzed words differed phonetically as well. However, the most
important finding was that when people speak silently, they show more
activity in their muscles, which can be attributed to trying to compen-
sate for the lack of auditive feedback. This means that an SSI trained on
EMG signals from audible speech only might not be the best approach,
and EMG signals from silent speech should be included in the training
process.

Part IV is the final part of this thesis and consists of Chapter 9, which is
the general discussion and conclusion.

To conclude, in the context of EMG-based SSI research, this thesis
focuses on the design and development of a Spanish EMG-speech
database and its collection and validation procedure, as well as analyses
of the effect of speaker variability, minimal articulation differences of
speech sounds, and speech mode. The findings can be used to develop
and improve an SSI for Spanish alaryngeal speakers.
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Resumen

Una interfaz de habla silenciosa (a la que nos referiremos como SSI, de
su nombre en inglés, silent speech interface (SSI)) tiene el potencial de
devolver la capacidad de hablar a quienes han perdido la voz. Estas
interfaces, utilizan técnicas de aprendizaje automatico para convertir
biosenales generadas por el apartado fonador en sefiales de voz. Es-
tas biosefiales pueden generarse en diferentes puntos en el proceso de
produccion del habla, de forma que pueden obtenerse del cerebro (por
electro-encefalografia u otras técnicas), o de los diferentes muisculos que
intervienen en la produccién del habla como la lengua, los musculos
de la cara y el cuello etc. El término "Habla silenciosa’ hace referencia
al acto de articular como si se estuviera hablando, pero sin producir
sonido. Asi, las biosefiales pueden obtenerse tanto con habla audible
como con habla silenciosa. Se han estudiado diversas técnicas para
capturar las sefiales. De entre ellas, esta tesis estd centrada en los re-
tos asociados al desarrollo de interfaces silenciosas utilizando sefiales
electromiogréficas (EMG) capturadas desde los musculos articulatorios.
El estudio de estas interfaces requiere enfrentarse a diferentes retos o
preguntas de investigacion. Por ejemplo, en primer lugar, serd necesario
encontrar el método 6ptimo para la adquisicién de las sefiales: las selec-
cién de los electrodos y sus posiciones. Ademds, es necesario analizar
las diferencias entre los diferentes hablantes, los diferentes modos de
habla, o el efecto de la ausencia de informacién de las cuerdas vocales o
del movimiento de la lengua. En esta tesis se analizan todos estos retos
asociados a las interfaces silenciosas basadas en EMG y de forma es-
pecifica para el espafiol y personas sin laringe. Ayudar a estas personas
en su proceso de comunciacion es el objetivo tltimo del trabajo que se
describe en esta tesis.

La Parte I en esta tesis describe las bases y fundamentos de diferentes

aspectos relativos a las interfaces silenciosas basadas en sefiales EMG.
El Capitulo 1 contiene una breve introduccién a la tesis, descri-
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biendo los objetivos de la investigacién, asi como una guia del docu-
mento.

El Capitulo 2 describe los fundamentos de la la produccién del
habla, el habla alaringea, las interfaces de habla silenciosa y las sefiales
EMG. Este capitulo también contiene un resumen bibliogréfico de los
estudios relativos a las interfaces de habla silenciosa basadas en EMG.
Tal y como se describe en el capitulo, las investigaciones desarrolladas
para la lengua espafiola y en especial con el grupo de hablantes alarin-
geos son escasas. Sin embargo, esto no es asi para el inglés y para
hablantes tipico. Por ejemplo, durante mi trayectoria doctoral, otros
investigadores desarrollaron un modelo con el que se obtenia habla
inteligible a partir de sefiales EMG de un hablante tipico de inglés.

La Parte II de esta tesis presenta una nueva base de datos de voz y
sefiales EMG, describiendo la metodologia seguida para la recopilacion
y validacién de los datos.

En el Capitulo 3 se describe el estudio piloto llevado a cabo para
encontrar la configuracién de adquisiciéon 6ptima. El objetivo era en-
contrar el mejor tipo de electrodos, asi como su niimero y ubicacién
en la cara y cuello del hablante. En los experimentos descritos en este
capitulo (y en los capitulos 5- 7) realizamos una tarea de clasificacion
de fonemas. En primer lugar, con las sefiales EMG procedentes de
los electrodos se calculan un conjunto de caracteristicas temporales,
conocidas como TD-features, que han sido utilizadas ampliamente en
la bibliografia. A continuacién, se segmentan en fonemas automati-
camente las sefiales de voz, de modo que a cada trama se le asocia
una etiqueta de fonema. Asf, con las caracteristicas EMG y la etiqueta
del fonema como informacién de entrada, obtenidos para un ntimero
variable de palabras o frases (dependiendo del experimento), se entrena
el clasificador. En la fase de prueba, se proporcionan las caracteristicas
EMG a la entrada, de modo que el clasificador ya entrenado predice las
etiquetas de los fonemas correspondientes. Para medir el rendimiento
del sistema se utiliza el porcentaje de aciertos para cada fonema. En
este capitulo dedicado al estudio piloto, se comparan los porcentajes de
acierto para dos tipos de electrodos y para distintas ubicaciones de los
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electrodos en la cara y el cuello. Basdndonos en estas comparaciones, se
seleccion6 una configuracién consistente en ocho pares de electrodos
individuales bipolares, en los que cada par de electrodos se ubica en un
miusculo especifico de la parte inferior de la cara o de la parte superior
del cuello. La base de datos descrita més adelante fue adquirida con
esta configuracion final.

El Capitulo 4 presenta la base de datos obtenida. Esta base de datos
contiene sefiales EMG y sefiales de voz correspondientes a palabras
o frases pronunciadas de forma audible (audio y EMG) o de forma
silenciosa (Gnicamente EMG). Se recogieron aproximadamente 22 horas
de datos de seis hablantes tipicos y de tres alaringeos. El ntiimero de
sesiones difiere por hablante, pero todos ellos grabaron un conjunto
comun de frases y palabras. En este capitulo también se describe el
procedimiento completo de adquisicion, incluyendo por ejemplo el
uso de la méscara 3D que utilizamos para cada hablante con el fin de
reducir la variabilidad de las sesiones, y se ofrecen algunos ejemplos de
datos.

El Capitulo 5 describe el estudio realizado para validar el proced-
imiento de adquisicién. Para ello compara el comportamiento de un
mismo clasificador cuando se entrena y prueba con sefiales de nues-
tra base de datos y con las de una base de datos (en inglés) que se
toma como referencia. Al predecir los fonemas correspondientes a
sefiales EMG utilizando un clasificador simple, el porcentaje de aciertos
obtenido para una sesién larga de la base de datos de referencia fue
del 28,32%, considerando 40 clases o fonemas del inglés. Repitiendo
el experimento con aproximadamente la misma cantidad de datos de
nuestra base de datos en espafiol, con 30 clases o fonemas, el porcentaje
de aciertos promedio alcanzado fue del 40,85%. Aunque el menor
numero de fonemas del espafol explica un parte de la mejora en el
porcentaje de acierto, los resultados ofrecen una validacién positiva de
la configuracién de adquisicion.

La Parte III de esta tesis se centra en evaluar el potencial y las limita-
ciones del desarrollo de una interfaz de habla silenciosa con la base de
datos recién adquirida.

En el Capitulo 6 se aborda una limitacién bien conocida en la
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elaboraciéon de una interfaz de habla silenciosa, a saber, el impacto
de las variabilidad entre diferentes hablantes o diferentes sesiones de
adquisicion de datos del mismo hablante. Debido a esta variabilidad,
puede producirse en el comportamiento del modelo una fuerte depen-
dencia del conjunto de datos con el que ha sido entrenado. En este
capitulo, describimos un conjunto de experimentos de clasificacion de
fonemas que analizan precisamente esta dependencia del modelo con
el hablante y con la sesién. Empezamos con datos de una misma sesién
(lo que automaticamente significa del mismo hablante) y repetimos el
experimento para 16 sesiones de seis hablantes distintos. La sesioén
denominada 001-004 (sesién 004 del hablante 001) obtuvo el mejor por-
centaje de acierto (50,54%). Los datos de esta sesién consisten en sefiales
de voz audibles y sus correspondientes sefiales EMG. A continuacién,
entrenamos el clasificador con datos de otras sesiones del mismo lo-
cutor (001), aumentando asi la cantidad de datos de entrenamiento.
Cuando el clasificador se entrené con otra sesién (001-001), la precision
de la prueba disminuy6 drasticamente hasta el 23.40%. Sin embargo,
hubo una ligera mejora al ir aumentando los datos de entrenamiento
y al afiadir dos sesiones més los resultados subieron al 30.41%. Es
decir, que el efecto de la variabilidad de las sesiones puede compen-
sarse aumentando la cantidad de datos de entrenamiento. Al repetir
el altimo experimento, pero sustituyendo los datos de entrenamiento
por los de otro hablante, el porcentaje de aciertos se redujo atin mas
hasta el 20,43%. Sin embargo, hay que sefialar que este porcetaje puede
variar mucho en funcién de la combinacién especifica de datos de en-
trenamiento y prueba, lo que implica que algunos locutores y sesiones
se comportan mejor que otros. En cualquier caso, hemos observado
que la variabilidad de los hablantes también influye en el potencial de
nuestros datos, por lo que deberia tenerse en cuenta en el desarrollo
final.

El Capitulo 7 tiene como objetivo identificar el efecto que tiene
la similitud entre ciertos sonidos sobre la capacidad de prediccién de
dichos sonidos a partir de las sefiales EMG. En espafiol hay siete grupos
de fonemas segtin el modo de articulacién. Dentro del grupo de las
oclusivas encontramos pares minimos en los que la tinica diferencia
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consiste en la vibracién (o no vibracién) de las cuerdas vocales (lo que
se denomina sonoridad). Se trata de [b-p], [d-t] y [g-k], en donde el
primero sonido de cada par es sonoro y la segundo es sordo. En otros
casos, la tnica diferencia puede ser la posicién de la lengua, como
en [r-r]. También dentro del grupo de las vocales encontramos pares
constrastivos, como [i-e]. Dado que las sefiales EMG no contienen
informacion directamente relacionada con el empleo de la lengua o de
las cuerdas vocales, es de esperar cierta confusién entre estas parejas de
sonidos con diferencias minimas de articulacién. Por ello se ha realizado
un andlisis de confusién entre fonemas, que es el estudio descrito en
este capitulo. Una vez més, hicimos experimentos de clasificacién de
sonidos, esta vez analizando con mas detalle las predicciones. Los
resultados mostraron que para algunos pares minimos la confusién era
efectivamente superior al acierto. Por ejemplo, [u] se predijo con mayor
frecuencia de forma inexacta como [o] (38,68%) que de forma correcta
como [u] (37,57%). Sin embargo, es importante afiadir que parte de
la confusion puede explicarse por la alta correlacion que encontramos
entre el porcentaje de acierto del fonema y el recuento de etiquetas, lo
cual provoca que los fonemas méds comunes también se predijeran con
relativa mayor frecuencia. La principal conclusion de este estudio es
que podria ser til tener en cuenta la contribucién de las caracteristicas
fonéticas individuales y afiadir un componente lingtiistico, como un
modelo de lenguaje.

El Capitulo 8 presenta un andlisis estadistico de las sefiales EMG
para comprender mejor la actividad muscular en diferentes contextos.
Utilizando un método de regresiéon no lineal denominado Modelo adi-
tivo generalizado (GAM) se comparan los patrones de actividad de
hablantes tipicos y hablantes alaringeos tanto para habla audible como
para habla silenciosa, y para diferentes palabras. En primer lugar, con-
cluimos que el método puede ser adecuado para futuras investigaciones
sobre la relacién entre el uso de los musculos y la produccién de sonidos
especificos, basdandonos en el hallazgo de que ciertas diferencias en la
actividad muscular aparecfa también en la parte en la que dos pal-
abras analizadas diferian fonéticamente. Sin embargo, el hallazgo mas
importante fue que cuando las personas hablan en silencio muestran
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mads actividad en sus musculos, lo que puede atribuirse a que intentan
compensar la falta de retroalimentacién auditiva. Esto significa que un
entrenamiento basado tinicamente en sefiales de habla audible podria
no ser el mejor enfoque, y que las sefiales de habla silenciosa deberian
incluirse en el proceso de entrenamiento.

La Parte IV es la parte final de esta tesis y consta de el Capitulo 9, con
una discusion general y las conclusiones de la tesis.

Para concluir, en el contexto de la investigacién en interfaces de
habla silenciosas basadas en EMG, esta tesis se centra en el disefio
y desarrollo de una base de datos en espafiol y en el procedimiento
de recopilacién y validacién, asi como en el andlisis del efecto de la
variabilidad del hablante, las diferencias minimas de articulacién de los
sonidos del habla y el modo de habla. Los resultados de la tesis pueden
ser ttiles para desarrollar y mejorar una SSI para hablantes alaringeos
en espafol.
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Samenvatting

Dit proefschrift vat het werk samen van een promotieonderzoek dat is
uitgevoerd als onderdeel van het ReSSInt project. Dit project heeft als
doel om, met behulp van technologie, Spanjaarden zonder stembanden
weer een stem te geven. Van deze mensen zijn de stembanden operatief
verwijderd, waardoor ze niet meer kunnen spreken zoals voorheen.
Hierdoor zijn ze toegewezen op alternatieve methoden om te kunnen
communiceren.

Een stille-spraakinterface (SSI) is een alternatieve communicatie-
methode gebaseerd op een technologie waarbij spraak kan worden
herkend zonder dat er daadwerkelijk geluid wordt geproduceerd. Ter-
wijl de gebruiker articuleert zonder geluid (oftewel stil spreekt), zet
de SSI spraak-gerelateerde informatie uit de tong, gezichtsspieren, lip-
pen of hersenen, om naar spraak. Om bijvoorbeeld informatie uit
de gezichtsspieren te halen wordt gebruik gemaakt van een methode
genaamd elektromyografie (EMG). Dit is een techniek waarbij, doormid-
del van elektroden op de huid, de elektrische activiteit van spieren
wordt gemeten wanneer ze samentrekken.

Het onderwerp van dit proefschrift is het onderzoeken van de
mogelijkheden om een SSI te ontwikkelen gebaseerd op EMG, oftewel
een systeem dat spieractiviteit rondom de mond vertaalt naar spraak.
In voorgaande jaren is er al veel onderzoek gedaan naar dit onder-
werp, maar dit was voornamelijk gericht op de Engelse taal. Dit proef-
schrift presenteert de eerste onderzoeken naar EMG-SSI’s voor Spaanse
mensen zonder stembanden.

Een SSI wordt ontwikkeld met behulp van machinaal leren. Dit
houdt in dat een computermodel patronen leert herkennen in data
(gegevens) en aan de hand van de geleerde patronen voorspellingen
kan doen. In dit geval bestaat de data uit spraaksignalen (audio) en
spiersignalen (EMG). Omdat iemand zonder stembanden geen geluid
kan produceren, wordt data gebruikt van zowel mensen met als mensen
zonder stembanden. In de volgende stappen wordt uitgelegd hoe het
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computermodel precies wordt ontwikkelt:

1. Data verzamelen: Spraaksignalen en spiersignalen worden opgenomen
van mensen met stembanden. Van mensen zonder stembanden
worden alleen spiersignalen opgenomen, terwijl ze stil spreken.

2. Trainen van het model: Het computermodel wordt gevoed met
spiersignalen en corresponderende spraaksignalen, en leert de
relatie tussen deze signalen. Dit gebeurt door middel van algorit-
men die patronen kunnen herkennen.

3. Testen van het model: Na het trainen wordt het model getest met
spiersignalen die niet in het trainingsproces gebruikt zijn. Het
model voorspelt en genereert (gesproken) tekst op basis van deze
spiersignalen met behulp van de patronen die het heeft geleerd.
De accuraatheid van deze voorspellingen toont aan hoe goed het
model onbekende spiersignalen kan omzetten naar spraak. Dit
kunnen dus ook de spiersignalen van mensen zonder stembanden
zijn.

Om een SSI te ontwikkelen dat echt gebruikt kan worden, zullen eerst de
volgende vragen beantwoord moeten worden, welke de basis vormen
van dit proefschrift.

* Welke spieren van het gezicht en de nek zijn betrokken bij spraakpro-
ductie?

* Wat is het effect van variatie in EMG-signalen tussen verschillende
sprekers, en verschillende opname-sessies van dezelfde spreker?

* Wat is het effect van het ontbreken van informatie van de stemban-
den en tong, twee belangrijke elementen van spraakproductie?

* Hoe verhoudt de articulatorische spieractiviteit van hoorbare
spraak zich tot die van stille spraak, en die van mensen met en
zonder stembanden in het geval van stille spraak?
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Verschillende onderzoeken zijn uitgevoerd om deze vragen te kun-
nen beantwoorden. Het proefschrift bestaat daarom ook uit meerdere
hoofdstukken. Hieronder volgt een beschrijving van ieder hoofdstuk.

Hoofdstuk 2 biedt achtergrondinformatie over alle relevante onder-
werpen die in dit proefschrift aan bod komen, zoals hoe het spraakpro-
ductiesysteem werkt, wat er verandert na verwijdering van de stemban-
den, hoe een SSI precies werkt, een beschrijving van de EMG techniek,
en welke resultaten andere studies in dit onderzoeksgebied hebben
laten zien.

Hoofdstuk 3 beschrijft een kort vooronderzoek waarin we hebben
onderzocht waar we de EMG elektroden het beste konden plaatsen om
zoveel mogelijk relevantie informatie te verkrijgen. We hebben gekozen
voor acht spieren in de onderkant van het gezicht en een deel van de
hals. Met de signalen van deze acht spieren (van de veertien in totaal)
kon een simpel computermodel het beste voorspellen welke spraak
erbij hoorde. Het model kwam niet in de buurt van een goedwerkend
SSI, maar voldeed wel om verschillende spieren te vergelijken.

Hoofdstuk 4 beschrijft de complete dataverzameling. We hebben
ruim 22 uur aan signalen verzameld van zes sprekers met en drie
sprekers zonder stembanden. De sprekers met stembanden hebben we
zowel met geluid als zonder geluid woorden en zinnen laten articuleren,
en de sprekers zonder stembanden (uiteraard) alleen zonder geluid.
Tegelijkertijd meetten we de spieractiviteit van die acht spieren.

Hoofdstuk 5 had als doel het verifiéren van de dataverzamel-
methode. Hiervoor vergeleken we onze signalen met die van een al
bestaande verzameling voor het Engels en het bleek dat we uit onze
signalen veel meer informatie konden halen, waardoor we door zijn
gegaan met verzamelen.

Hoofdstuk 6 beschrijft een onderzoek waarin we een model hebben
laten trainen en testen met data van dezelfde of andere spekers of
opnamesessies van dezelfde spreker. Hiermee wilden we analyseren
in hoeverre variatie in signalen invloed heeft op de prestatie van het
computermodel. Het bleek dat de accuraatheid van de voorspellingen
minder werden zodra een model was getraind met signalen van een
sessie en getest met signalen van een andere sessie. Hetzelfde effect
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was zichtbaar wanneer er signalen van verschillende sprkers werden
gebruikt. Echter, het bleek wel dat als er meer data werd toegevoegd
waarmee het model kon trainen, de voorspellingen tijdens de testfase
stap voor stap beter werden.

Hoofdstuk 7 beschrijft hoe we onderzochten of het computermodel
de juiste van twee klanken weet te voorspellen als deze qua articulatie
veel op elkaar lijken. Een voorbeeld hiervan zijn de [g] en [k], die
enkel verschillen in het trillen van de stembanden ([g]) of niet ([k]).
Het blijkt dat in dergeljke gevallen het model inderdaad meer moeite
heeft. Een manier om dit probleem aan te pakken is om bijvoorbeeld
extra contextinformatie aan te bieden, zodat het model op basis van
kansberekening een meer ondersteunde voorspelling kan doen. Als het
model tijdens het trainen geleerd heeft dat een [g] vaker voorafgegaan
wordt door een klinker, en een [k] door een medeklinker, wordt de
voorspelling makkelijker.

Hoofdstuk 8 beschrijft een analyse van de EMG signalen met be-
hulp van een statistische methode. We wilden namelijk graag weten hoe
we konden onderzoeken welke spieren bijdragen aan de productie van
specifieke (combinaties van) klanken. Dit onderzoek heb ik uitgevoerd
bij het Speech Lab in Groningen, waar ze gespecialiseerd zijn in deze
methode. Samengevat hebben we gekeken naar de gemiddelde acti-
vatiepatronen van de signalen in verschillende contexten. Zo hebben
we bijvoorbeeld gevonden dat, zoals verwacht, het patroon anders is
in het begin van twee woorden die alleen in de eerste helft van elkaar
verschillen (noche en leche). Ook vonden we dat er over het algemeen
meer activatie is van de spieren als een woord zonder geluid wordt
uitgesproken dan met. Wij hadden hiervoor als verklaring bedacht dat
als er geen geluid is, mensen onbewust beter gaan articuleren om dat
te proberen te compenseren. Over het algemeen concludeerden we dat
deze methode geschikt kan zijn om de spierbewegingen van specifieke
klanken preciezer in kaart te brengen.

Samengevat richt dit proefschrift zich, in de context van EMG-SSIs,
op het ontwerp en de ontwikkeling van een Spaanse EMG-spraakdatabase
en de verzamel- en validatieprocedure ervan, evenals op analyses van
het effect van sprekervariabiliteit, minimale articulatieverschillen van
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spraakklanken, en spraakmodus. De bevindingen kunnen worden ge-
bruikt om een SSI voor Spaanse alaryngeale sprekers te ontwikkelen en
verbeteren.
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Listed below are the main contributions of this doctoral thesis to re-
search in EMG-based SSIs.

* A database of EMG and (silent) speech signals from typical and
alaryngeal Spanish speakers, called ReSSInt-EMG.

* A literature review of EMG electrode setups used in previous
studies about EMG-based SSIs.

* A pilot study to identify the most useful muscles to extract speech-
related information from.

* An effect analysis of two known challenges in this research area:
variation in EMG signals between speakers and sessions, and the
absence of information from two important speech production
elements, namely the vocal cords and the tongue.

* A statistical analysis of EMG activity patterns in different con-
texts, which can be used as a method to map muscle activity and
linguistic units with more detail.
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