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Abstract 

This study explores the neural mechanisms underlying imagined speech and its potential 

for brain-computer interface (BCI) applications, particularly for individuals with severe 

communication impairments. Using EEG and a novel deep learning model, we aimed to 

decode linguistic components from imagined speech, focusing on vowels and semantic 

categories. Our model, which integrates convolutional and recurrent neural network 

architectures, was validated through the classification of imagined speech, overt speech, 

and silence, achieving a significant accuracy of 81.76%. High accuracy was also 

obtained in vowel classification during imagined speech (92.06%) and in semantic 

categorization (84.88%), surpassing previous studies. We further investigated the role of 

different EEG frequency bands—Alpha, Beta, Gamma, and High Gamma—in imagined 

speech decoding. The results indicate that the Beta and Alpha bands are most effective 

for decoding, offering reliable neural signal representations. By improving the capacity 

to classify imagined speech and identifying the most effective EEG frequency bands for 

decoding, these findings lay the groundwork for more refined and accessible BCI 

applications in the future. 

Keywords: Imagined Speech, BCI, EEG, DL Classification, Frequency Bands 
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1. Introduction 

 Language is a fundamental tool for communication among individuals (Krishna et 

al., 2021). However, certain diseases pose significant challenges to communication, 

rendering it difficult or even impossible. Conditions such as amyotrophic lateral sclerosis 

(ALS), advanced stages of multiple sclerosis, or cerebrovascular infarctions affecting 

brainstem regions can disrupt the neural pathways responsible for language production 

(Coretto et al., 2017). Most of the patients with ALS report that one of their biggest 

concerns after being diagnosed is the loss of their linguistic ability (Hecht et al., 2002). 

Some patients can experience a locked-in state, characterized by the inability to 

voluntarily move specific muscles while maintaining cognitive functions intact. While 

some residual movements, such as eye or head movements, remain intact for some 

patients in a locked-in state, these movements are impossible for others (Bauer et al., 

1979; Koch-Fager et al., 2019).  

Alternative speech systems have been developed to facilitate communication for 

individuals with limited mobility, commonly relying on residual movements associated 

with linguistic expression, such as head or eye movements, to enable word or letter 

selection via a cursor (Koch-Fager et al., 2019). However, these systems face several 

challenges, such as allowing only a relatively slow production speed, currently averaging 

around 10 words per minute compared to the natural language production rate of 

approximately 150 words per minute (Anumanchipalli et al., 2019). One promising 

avenue for addressing these challenges lies in the synthesis of language through Brain-

Computer Interfaces (BCIs). BCIs are devices that can be used to decode non-acoustic 

biosignals associated with language production, enabling individuals affected by various 

conditions to communicate through text, text-to-speech (TTS) synthesizers, or cursor 

control for selection purposes (Wolpaw et al., 2002). Traditional BCIs have focused on 

motor imagery, event-related potentials (ERPs), and steady-state visually evoked 

potentials for language synthesis (Farwell and Donchin, 1988; McFarland et al., 2000; 

Sutter, 1992). Motor imagery BCIs rely on imagining movements with specific body parts, 

primarily hands, generating discernible patterns in brain waves interpretable by BCIs 

(Hamedi et al., 2016).  

Regarding ERPs, in the study by Donchin et al. (2000), 14 participants (10 healthy and 

4 paraplegic) a BCI-based speller was described in which participants were presented 

with a matrix containing letters, numbers, and the space character. Stimuli were 

randomly presented to the participants, one after the other, until the one they wanted to 

select appeared (See Figure 1). The selection was based on the P300 component. 

Compared to the other stimuli, the flashing of the character of interest elicited a higher 

positive deflection occurring around 300 ms after stimulus presentation in the central, 

frontal, and parietal electrodes. However, the time per selection of 5 characters was 

approximately one minute, making it impractical for clinical applicability. Another strategy 

involves using steady-state visually evoked potentials.  
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Sutter (1992) demonstrated that steady-state visually evoked potentials could effectively 

distinguish between different visual stimuli based on occipital EEG patterns, but the 

technique was limited by its reliance on electroretinographic responses and the 

complexity of stimulus presentation. These BCI modalities excel in scenarios involving 

multiple response choices but present several limitations for natural communication. 

Further innovation is required to provide more intuitive BCIs for natural language 

communication (Herff et al., 2015). One of the most widely used methodologies to 

improve these BCIs has been imagined speech decoding (Anumanchipalli, Chartier & 

Chang, 2019).  

1.1. Imagined Speech 

 Imagined speech, also known as covert speech, involves the silent verbalization 

of phonemes, words, or sentences without the activation of facial muscles, providing a 

non-invasive and precise insight into the cognitive processes underlying language 

production. Some studies have investigated the neural correlates of imagined speech, 

drawing parallels with the mechanisms of overt speech (LaRocco et al., 2023). Wise et 

al. (1991) pioneered an investigation into the neuronal activity of key language areas 

during imagined speech, including Broca's area, Wernicke's area, and the 

supplementary motor area (SMA). In their Positron Emission Tomography’s (PET) study, 

participants were asked to utter the name of several verbs. Compared to the rest 

condition, they observed an increase in regional cerebral blood flow (rCBF) in the SMA 

and Wernicke's areas. According to the authors, the activation of the SMA reflected the 

motor planning of speech and the activity of the Wernicke's area corresponded to the 

activation of the speech sounds in order to produce them. Furthermore, Hermes et al. 

(2015) carried out a study that combined functional magnetic resonance imaging (fMRI) 

and electrocorticography (ECoG) recordings during a similar silent generation task of 

verbs. The increased power in gamma activity (65-95 Hz), along with a decrease in theta 

activity (4-7 Hz) across critical brain regions for speech production, such as the Middle 

Figure 1 

Stimulus Matrix used for the monitoring. Every 125ms, a row or a column was intensified. 

Then the ERP P300 was analysed to see if the selected number/letter was in that column 

(Donchin et al., 2000). 
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Temporal Gyrus, the Wernicke's area and the Broca's area, have been interpreted as the 

use of shared resources to process both types of speech, covert and overt. 

However, the relationship between imagined speech and overt speech remains unclear. 

One of the most explanatory theories regarding the functioning and neuroanatomical 

correlates of imagined speech is the Efference copy hypothesis within the Internal 

Forward Model (IFM; Tian & Poeppel, 2010). According to the IFM, the brain can predict 

the sensory consequences of certain motor actions (i.e., speech production), causing the 

activation of sensory areas involved in that action. Tian & Poeppel (2013), through five 

magnetoencephalographic (MEG) studies, found that imagined speech utilizes areas like 

those of actual speech. During imagined speech, the auditory cortex generates a copy 

of the anticipated motor signal, defined as an efference copy, activating the auditory 

cortex in a manner similar to that observed during speech production. 

Another notable theory regarding the neural correlates of imagined speech is the 

Abstraction hypothesis (Cooney et al., 2018). The Abstraction hypothesis proposes that 

imagined speech can occur without the involvement of an explicit motor plan. This theory 

suggests that imagined speech operates at a phonemic level, but more flexible views 

suggest that individuals might also use motor control during the imagination of speech 

(e.g., Perrone-Bertolotti et al., 2014), depending on the strategy they use. Evidence 

supporting the Abstraction hypothesis comes from studies demonstrating that, while 

silently articulated speech exhibits the phonemic similarity effect (i.e., participants make 

more errors when the phonemes are more similar), this interference effect is not 

observed in imagined speech (Proix et al., 2022), when the articulatory component is 

absent. The theory posits that, rather than following the motor neural pathways typically 

associated with speech production, neural activity during imagined speech is shaped by 

how each person envisions speech, whether through subarticulation or at a perceptual 

phonetic level. This highlights the importance of decoding imagined speech not only from 

motor areas but also from perceptual areas (Proix et al., 2022). 

However, recent studies argue that the major difference between overt speech and 

imagined speech would lie in the degree of brain activation associated with the action, 

with imagined speech showing reduced cortical activation (Wu et al., 2024). This 

hypothesis aligns with the findings in the decoding of overt and imagined speech, with 

overt being much more precise. This characteristic would make the decoding of imagined 

speech remarkably more complicated through neural signals (Wu et al., 2024). In another 

study conducted by Lu et al. (2021), it was found that when participants were asked to 

imagine reciting a poem, the left inferior frontal cortex was activated. According to the 

authors, this is explained by the brain's preparation for generating the phonological 

sequence necessary to produce the poem. Similar results have also been observed 

when asking participants to rhythmically recite numerical counts (Lu et al., 2019). These 

studies suggest that top-down induction mechanisms help to structure and organize 

information similarly to real speech. Martinez-Manrique and Vicente (2015) support the 

idea that the activity of imagining to speak is not a "proper" function of cognition, but 

would depend on the same cognitive mechanisms involved in overt speech, making the 

neural networks of both mechanisms the same. However, such studies are often 

criticized for their ecological validity (Ilina et al., 2017). 

In summary, while further research in more ecologically valid conditions is necessary 

(Ilina et al., 2017), the scientific community largely supports the hypothesis that imagined 
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speech and overt speech share similar neural mechanisms and areas, particularly within 

the left hemisphere. However, cortical activation would be reduced during imagined 

speech compared to overt speech. Studies indicate that key areas such as Broca's area, 

Wernicke's area, and the SMA are activated during imagined speech, suggesting a 

shared use of neural resources (Li et al., 2021; Wise et al., 1991). Despite this, the 

decoding of imagined speech remains more complex, due to its lower precision and 

probably reduced activation compared to overt speech (Wu et al., 2024). These findings 

underscore the need for continued exploration into the neural correlates and cognitive 

processes underlying imagined speech to better understand its relationship with 

articulated speech. 

1.1.1. Procedures and Stimuli used in experiments aimed at decoding Imagined 

Speech 

 Research on imagined speech decoding mainly involves the use of the following 

tasks:  

1. Silently reading or repeating phonemes, syllables, words, sentences or 

pseudowords.  

2. Picture naming tasks.  

3. Generation of semantically related words (like in the verb generation task, where 

the participant must generate a verb related to a presented noun or adjective).  

The repetition of prompts is a crucial aspect in imagined speech research. Compared to 

the picture naming tasks or the generation of semantically related words, the repetition 

of prompts allows the researcher to be more confident regarding the specific response 

being produced by the participant. Different types of repetition task have been used. For 

example, Koizumi et al. (2018) and D'Zmura (2009) asked participants to repeat stimuli 

several times within the same trial, using rhythmic cues to maintain controlled repetition. 

This method helps in sustaining the imagined speech process (Panachakel & 

Ramakrishnan, 2021a), but it only improves decoding for the first repetitions, with signal 

quality deteriorating over time (Panachakel et al., 2020). 

Regarding the different ways to present the stimuli to the participants, presenting visual 

cues on a screen has been the most widely used method. For example, Koizumi et al. 

(2018) asked participants to imagine themselves saying the names of words displayed 

on a screen. Nevertheless, the auditory presentation has also been used. Min et al. 

(2016) used auditory stimuli in a silent repetition task of vowels, comparing the EEG 

activity between the vowels production condition and a mute condition. Other studies 

combined the presentation of visual and auditory stimuli (Nguyen et al., 2017), in order 

to provide greater sensory information and potentially enhance imagery, as what 

happens in motor imagery tasks (Ikeda et al., 2012). Each presentation method has its 

advantages and drawbacks. Visual stimuli activate the occipital lobe, an area that is 

thought to be irrelevant when producing speech. Consequently, in order to exclude the 

cerebral activity corresponding to the perception of stimuli in their silent speech 

production tasks, researchers often advocate for removing occipital channels in their 

analyses (Panachakel & Ramakrishnan, 2021a), resulting in the loss of this information. 

Auditory stimuli, on the other hand, pose the challenge of separating the cue signature 

from EEG signals. The combination of both stimuli faces these challenges plus the 

complexity of the experimental design, but it can yield positive results given that the 
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common activity between the two types of presentation should correspond to the 

production of the imagined speech only. 

As for the types of prompts used in imagined speech studies, they have evolved over 

time. Early studies focused on simple word prompts for directions or choices (e.g., "Yes," 

"No," "Up," "Down"; Sereshkeh et al., 2017), which are crucial for designing BCIs for non-

communicative patients. However, recent studies have shifted towards using phonemes 

and syllables. Suyuncheva et al. (2021) classified Japanese phonemes and syllables 

with 60% accuracy, although decoding certain syllables and phonemes posed challenges 

due to the similarity in the way various phonemes are articulated, resulting in similar 

cerebral activity (Panachakel & Ramakrishnan, 2021a). Panachakel et al. (2021b) 

achieved 95% accuracy in classifying syllabic categories, while Jahangiri & Sepúlveda 

(2019) used phonemes to achieve a similar accuracy, identifying key brain areas and 

emphasizing the importance of gamma waves for classification. LaRocco (2023) even 

achieved 98% accuracy in classifying English phonemes, demonstrating the potential for 

developing more intuitive BCIs. 

Combining syllables and different types of words could potentially enhance the 

classification performance of the software used by the BCIs. Nguyen et al. (2017) found 

improved performance when, in a first step, they used stimulus duration to distinguish 

between single phonemes vs. short vs. long words. However, further research is required 

to confirm these findings. To address the challenge of decreasing model accuracy as 

more words are decoded, Semantic Silent BCIs (SS-BCIs) have been developed. Rekrut 

et al. (2021) proposed a method to first discriminate the semantic category of a word and 

then select the specific word within that category, achieving 43.54% accuracy. This 

approach shows potential for increasing the number of decodable words. However, the 

use of semantic categories to expand the decodable vocabulary has not been thoroughly 

explored, primarily due to the difficulty in decoding EEG signals associated with different 

semantic categories during imagined speech. Thus, one of the primary objectives in this 

area remains the accurate decoding of EEG signals associated with different semantic 

categories during imagined speech. 

1.2. Electrophysiological Signals  

Among the methodologies used for decoding imagined speech, analysis of 

electrocorticographic (ECoG) signals has emerged as a particularly promising technique 

(see Figure 2). ECoG entails the invasive placement of electrodes directly onto the 

brain's surface. This technique offers high spatial and temporal resolution, coupled with 

a high signal-to-noise ratio, facilitating the examination of various linguistic aspects 

through recorded brain waves (Gonzalez-Lopez et al., 2020). For instance, Martin et al. 

(2014) used ECoG recordings from covert and overt speech to decode and reconstruct 

the spectrotemporal features of speech. When comparing the reconstructed 

spectrogram from imagined speech data with the original spectrogram (i.e., the 

spectrotemporal features of the speech recordings for the same items), they observed a 

marginally significant correlation. Recent attempts have achieved notable improvements, 

including the decoding of phonemes (Herff et al., 2015), selected words (Chen et al., 

2024), and even complete sentences (Anumanchipalli et al., 2019) during overt speech 

(and articulated speech in the case of Anunchipalli et al., 2019). For example, 

Anumanchipalli et al. (2019) designed an online decoding BCI for overt and articulated 

speech. As opposed to offline decoding, this type of BCI decodes and synthesizes 



9 
 

speech while the participant is trying to produce speech. In their study (Anumanchipalli 

et al., 2019), listeners transcribed the speech output and the transcribed speech was 

compared to the original sentence produced by the participant. The accuracy of perfectly 

transcribed sentences in the study ranged from approximately 21% with a word pool of 

50 words to 41% with a word pool of 25 words. Willett et al. (2023), with another type of 

intracranial electrodes implant (microelectrode arrays located on the ventral premotor 

cortex), demonstrated the feasibility of online decoding of lengthy sentences. Their 

patient could produce 62 words per minute via the TTS synthetiser and an accuracy of 

75% and 89% was achieved with a vocabulary pools of 125,000 and 50 words, 

respectively, marking a substantial improvement over the previous benchmark.  

Despite their effectiveness, BCIs based on intracranial electroencephalography remain 

highly invasive and require extensive training for clinical viability, limiting their practical 

application (Willett et al., 2023; Dekker et al., 2023). For example, to achieve applicability 

in terms of accuracy for the BCI developed by Willett et al. (2023), 140 days of daily 

practice with the neuroprosthesis were needed, and the electrodes implanted surgically 

also provoked microlesions. Another issue is that, since these studies are conducted 

primarily for clinical reasons (mainly the resection of areas generating epileptic seizures), 

the placement of the electrodes is not optimal for speech decoding (Herff et al., 2015). 

Electroencephalography (EEG), by contrast, offers a less invasive alternative, with 

electrodes placed on the scalp, typically using a cap, rendering it simpler and more cost-

effective to implement (Lopez-Bernal et al., 2022). Nevertheless, EEG-based language 

decoding has demonstrated limited success. Among the greatest achievements, 

Suyuncheva et al. (2020) showed that a reduced group of phonemes could be 

distinguished with EEG signal patterns. Building on this concept, LaRocco et al. (2023) 

identified the 44 phonemes of the English language by combining amplitude and 

spatiotemporal features of brain waves, achieving a 98% accuracy rate with machine 

learning models and an average classification of AUC-ROC (Area Under Curve-Receiver 

Figure 2 

Distribution of the studies of language decoding by 2020, based in the systematic review of 

Cooney et al. (2020)  
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Operating Characteristic) of 0.68 ± 0.002 across all phonemes, with an AUC of 1 

indicating perfect classification and an AUC of 0.5 indicating a random classification (see 

Figure 3), meaning that the model developed by LaRocco et al. (2023) had good 

discriminative capacity.  

Currently, four databases with EEG data 

are available, two in English (LaRocco 

et al., 2023; Zhao & Rudzicz, 2015), one 

in Dutch (DAIS; Dekker et al., 2023), 

and another in Spanish (Coretto et al., 

2017). These databases were created 

with the aim of establishing more 

effective decoding methods, by allowing 

the researchers to train different types 

of decoding models on the same data 

sets. The heterogeneous use of 

collection techniques within the 

community makes it difficult to estimate 

the most effective methods (Shah et al., 

2022). However, these databases lack 

internal reliability (Dekker et al., 2023), 

like the lack of any kind of testing to 

ensure that imagined speech was used. Furthermore, two of the databases (Coretto et 

al., 2017; LaRocco et al., 2023) only recorded data in imagined language, rendering the 

comparison between real and imagined speech conditions impossible. Lastly, although 

the work by Coretto et al. (2017) is an open database, permission from the authors is 

required to access it and the authors never responded to our requests for access. 

Interestingly, the researchers who created these databases also used the same data to 

test their decoding models (e.g., see the description above of the results of LaRocco et 

al., 2023). The The KARA ONE study, developed by Zhao & Rudzicz (2014), utilized both 

EEG measurements and facial and audio recordings. Both real speech and imagined 

speech were measured, but the accuracy of neither procedure was mentioned. 

Regarding overall accuracy within the EEG modality, it was very poor, correctly 

classifying between brain electrical activity associated with a vowel or consonant only 

18% of the time. Only the combined use of facial stimuli recordings and EEG achieved 

classification accuracy above chance. In the study by Dekker et al. (2023), two main 

comparisons were made. The first comparison tested whether their models could classify 

three conditions: rest, overt, and covert. The accuracy of their models averaged 70.6% 

(± 4.4%), which is higher than the 33% chance level. They also performed vowel 

classification in the covert condition, with an accuracy of 19.6% (± 2.1%), which is not 

above chance (20%). Lastly, the database provided by Coretto et al. (2017) is the only 

one in Spanish. However, the EEG model used is of low density (18 electrodes), and the 

results obtained in vowel classification were very poor, with an accuracy of 20%, the 

same as chance. 

1.2.1. EEG Acquisition Protocol  

 Most imagined speech studies with EEG have utilized 64-electrode systems with 

a sampling rate of 1 kHz (Panachakel and Ramakrishnan, 2021). However, although 

Figure 3 

An AUC-ROC representation for a random 

classification discrimination. 

Note. The True Positives rate is placed on the x-

axis, while the False Positives rate is placed on 

the y-axis, and a diagonal line is plotted, 

representing the discrimination by chance. 
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most researchers have employed high-density EEG systems, Wang et al. (2013) argued 

that an interesting approach could be to solely focus on the Wernicke and Broca areas, 

since the EEG channels over these areas receive the most significant data for classifying 

imagined speech. Wang et al. (2014), Nguyen et al. (2017), and Zhao and Rudzicz 

(2015) followed this reasoning. Another reason to use fewer electrodes stems from 

practical implications. Commercial EEG devices with fewer channels have shown 

relatively good decoding results, are more cost-effective, and have shorter setup and 

maintenance times than high-density EEG systems (LaRocco et al., 2023), making these 

devices more practical for commercial applications. 

However, the utilization of EEGs solely focusing on the Wernicke and Broca areas is not 

yet excessively robust, which might be due to a loss of information. Neuroimaging 

studies, such as that conducted by Newman et al. (2010), demonstrated that, aside from 

the Wernicke and Broca areas, other areas in the temporal lobe are also related to 

information processing when producing speech. Additionally, the use of high-density 

EEG devices allows for better Independent Component Analysis (ICA; Klug & Gramann, 

2020). ICA permits the decomposition of the original signal components, subsequently 

enabling the selection of significant features for analysis while discarding noise-related 

components (Stone, 2002).  

1.2.2. EEG Frequency Bands Implicated in Imagined Speech Decoding 

 EEG signals can be decomposed into 5 main frequency bands: delta, theta, 

alpha, beta and gamma. These frequencies go from 0.5 Hz till 150 Hz or more. Three 

frequency bands have been mainly used in the decoding of covert or overt speech: alpha, 

beta and gamma (Cooney et al., 2020; Hossein et al., 2023). 

• Gamma band (30 – 150 Hz): brain waves frequencies in this band, particularly 

those in the high gamma range (80-150 Hz), are associated with overt speech 

production, but these high frequencies are also often associated with artifacts 

in EEG signals, which can complicate their use in decoding imagined speech 

processes (Koizumi et al., 2018; Lopez-Bernal et al., 2022). 

• Beta band (12 – 30 Hz): frequencies in the beta range are linked with 

demanding cognitive tasks, such as decision-making and problem-solving 

tasks. This frequency range is also associated with speech production and 

auditory speech perception tasks (Hossain et al., 2023; Lopez-Bernal et al., 

2022). 

• Alpha band (8 - 12 Hz): Proix et al. (2024) demonstrated that brain waves 

frequencies in the alpha range play a role in speech encoding and that they 

can be useful to decode imagined speech.  

 

The study of frequency bands associated with the development of brain-computer 

interfaces (BCIs) is of great importance. These frequency bands seem to play different 

roles in the processing of covert or overt speech. Understanding the involvement of 

specific bands in the different speech processes would enable the fine-tuning of BCI 

algorithms, thereby enhancing their precision and accuracy (Lopez-Bernal et al., 2022).  

 

1.3. Feature Extraction and Classification  
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1.3.1. Feature Extraction 

 Feature extraction is the process of transforming raw EEG signals into a set of 

relevant and useful features that capture the most significant information to enhance the 

performance of predictive models for speech decoding (Panachakel & Ramakrishnan, 

2021). Feature extraction can be conducted in three primary domains: time, space, and 

frequency (Lopez-Bernal et al., 2022). Early studies in imagined speech decoding, such 

as Zhao & Rudznick (2015), focused on extracting time-domain characteristics like 

mean, variance, and skewness. However, current approaches emphasize both the 

spatial and frequency domains. 

In the frequency domain, commonly used methods for extracting critical signal features 

include Mel Frequency Cepstral Coefficients (MFCC), Fast Fourier Transform (FFT; 

Figure 4a), and Wavelet Transform (WT) (Lopez-Bernal et al., 2022). Notably, the 

Wavelet Transform has gained significant attention due to its ability to provide a multi-

resolution analysis of signals. This technique is especially valuable for EEG analysis as 

it allows the decomposition of signals into components of different scales, capturing both 

time and frequency information simultaneously. The Wavelet Transform's capability to 

highlight transient features in EEG data makes it particularly suitable for identifying the 

complex dynamics associated with imagined speech (Cooney et al., 2020; Shah et al., 

2022). Given these advantages, our study will employ the Wavelet Transform for feature 

extraction, aiming to leverage its precision in detecting subtle yet significant variations in 

the EEG signals related to different speech conditions.  

In the spatial domain, Common Spatial Patterns (CSP; Figure 4b) remains a prominent 

method for analyzing the spatial distribution of neural activity. CSP is particularly effective 

in identifying areas involved in imagined speech tasks by finding data projections that 

best separate different classes. The CSP algorithm transforms EEG data to maximize 

the variance for one class (e.g., silent state) while minimizing it for another (e.g., 

imagined speech), enhancing the detection of spatial patterns in EEG signals and 

enabling precise classification. However, a notable limitation of CSP is that, although it 

can be applied to multiclass classification problems, its binary classification nature 

restricts its applicability in studies requiring distinctions among more than two classes 

(Schirrmeister et al., 2017). 

a) 𝑋[𝑘] = ∑ 𝑥𝑁−1
𝑛=0 [𝑛] ⋅ 𝑒−𝑗

2𝜋

𝑁
𝑘𝑛

    b) 𝑊 = 𝑈𝑇𝛬−
1

2𝑈𝑇𝐶1𝑈𝛬−
1

2𝑈 

1.3.2. Classification Algorithms 

 In order to classify features extracted from EEG signals, researchers have 

employed different types of Machine Learning (ML) algorithms (Shah et al., 2022). These 

are statistical algorithms designed to recognize patterns within data. In the context of 

Figure 4  

a) The Fast Fourier Transform (FFT) algorithm converts the EEG signal from the time domain 

to the frequency domain. This step is typically performed before applying additional frequency 

domain extraction techniques. b) The Common Spatial Pattern (CSP) algorithm is applied to 

maximize the variance of class A and minimize the variance of class B by optimizing the spatial 

pattern vectors W (Vectors of the spatial patterns). 
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BCIs for speech and language decoding, ML techniques learn to identify specific patterns 

in the EEG signals associated with different types of speech stimuli (e.g., phones or 

words). This capability allows them to make accurate predictions and classifications of 

EEG data (Cooney et al., 2018).  

Machine Learning (ML) encompasses a range of techniques for pattern recognition. 

Common ML models include Support Vector Machines (SVM), Decision Trees (DT), and 

Linear Discriminant Analysis (LDA) (Lopez-Bernal et al., 2022). These models are trained 

using data such as epochs of imagined speech for various words (LeCun, 2015). While 

these techniques have been successful, their reliance on manual feature engineering 

can limit their performance and scalability. To solve the above problem, Deep Learning 

(DL) was conceived (LeCun, 2015), which is a subfield of ML employing artificial neural 

networks as predictive models for regression and classification. 

DL algorithms, such as Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), offer several advantages over traditional ML methods. These models 

are noted for their ability to create hierarchical representations from EEG data. In 

particular, CNNs are models inspired by the connectivity patterns in the visual cortex 

that, are highly effective in identifying spatial patterns within EEG signals and 

hierarchizing them, thanks to their convolutional layers which are systematically able to 

categorize the importance of the given features (Roy et al., 2019; see Figure 5).  

Figure 5 

Diagram of the Convolutional Neural Network Architecture. Input layer receives raw image 

data and passed through convolutional layers. These layers apply multiple filters to extract 

features such as edges and textures, producing feature maps. Pooling layers are employed to 

reduce the dimensionality of the feature maps, retaining the most important information while 

reducing computational load. Finally, the flattened output combine the extracted features and 

produce the final classification output. 

 

These networks excel at detecting subtle variations and spatial configurations, making 

them particularly useful for classifying imagined speech patterns (Tamm et al., 2020). On 

the other hand, RNNs are specialized in handling sequential data, which is crucial for 

capturing temporal dependencies in EEG signals (Rumelhart et al., 1986). RNNs update 

their internal state with each time step, which allows them to retain information from 

previous states and adaptively process new data. This capability is particularly valuable 
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for decoding EEG signals related to imagined speech, where temporal patterns are 

significant (Roy et al., 2019). 

However, RNNs face challenges such as gradient explosion, which occurs when the 

weights of the network become excessively large, leading to numerical instability. To 

address this, advanced RNN architectures like Long-Short Term Memory (LSTM) and 

Gated Recurrent Unit (GRU) have been developed. These models incorporate 

mechanisms to regulate the magnitude of weights, facilitating effective learning over long 

sequences (Agarwal & Kumar, 2022). 

CNNs are designed to handle spatial patterns through layers of convolution and pooling. 

The initial layers apply convolution to capture spatial features, which resemble band-

pass filtering and CSP. The resulting feature maps highlight distinctive characteristics of 

brain waves. Subsequent layers, including activation functions and pooling, further refine 

these features. For instance, while CNNs often use functions like ReLU for non-linearity, 

some architectures might include operations like squaring to enhance feature 

discrimination (Oh et al., 2019). Batch normalization and dropout techniques are applied 

to prevent overfitting, ensuring robust model performance (Lawhern et al., 2018; Cooney 

et al., 2020). 

The integration of CNNs and RNNs presents a promising approach to advancing 

imagined speech decoding. By leveraging the strengths of both models—CNNs for 

spatial analysis and RNNs for temporal processing—researchers can develop 

comprehensive DL architectures that capture both spatial and temporal aspects of EEG 

signals (Tang et al., 2015; Roy et al., 2018). This integration enhances the depth and 

complexity of decoding models, potentially leading to improved communication 

interfaces for individuals with speech impairments (Cooney et al., 2020). The shift 

towards DL models opens new research avenues, offering improved feature extraction 

and classification capabilities compared to traditional ML methods. While DL has 

demonstrated significant promise in enhancing our understanding of the neural 

mechanisms underlying imagined speech production, further research is needed to 

identify the most effective DL techniques for EEG signal processing and classification 

(Cooney et al., 2020).  

1.4. Main goals 

In this study, we aim to evaluate the efficiency of a novel classification algorithm 

that leverages modern computational techniques, based on the architecture proposed 

by Roy et al. (2018). While we started with their original design, we have modified it 

specifically for the classification of imagined speech, integrating parallel deep learning 

convolutional networks with advanced recurrent elements like the Gated Recurrent Unit 

(GRU). Our main objectives are threefold: 

1. Classification of Speech Types: We will test our model's ability to classify 

EEG data into three conditions: imagined speech, real speech, and silence, 

following the methodology of Zhao & Rudznick (2014). If successful, this will 

demonstrate the model's discriminative capability. 

2. Vowel and Semantic Category Decoding: Building on previous work, we 

will extend the model’s application to decode Spanish vowels (/a/, /e/, /i/, /o/, 
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and /u/) and words from six semantic categories (kitchen utensils, animals, 

food, clothing, musical instruments, and body parts).  

3. Frequency Band Analysis for Decoding: We will investigate which 

frequency bands contribute most to decoding imagined speech by analysing 

Morlet wavelets across different frequency bands in EEG recordings (1-120 

Hz).  

 

1.5. Hypothesis 

 Three hypotheses were proposed to address the main goals described above. 

First hypothesis: Classification of the types of speech production 

• H1: Our model will be able to classify Rest, Imagined speech and Overt speech 

above chance level (>33%). Furthermore, fulfilling this hypothesis provides a 

manipulation check to confirm that the participant was performing imagined 

speech by observing differences with silent trials (the Rest condition). 

o H1.1: Differences between the three conditions will be found across all 

analysed frequency bands: Alpha, Beta, Gamma, and High Gamma. 

o H1.0: Differences between the three conditions will be found only on 

certain frequency bands. 

• H0: Our model will not be able to decode the types of speech between the three 

conditions above chance level. 

Second hypothesis: Classification of the Spanish vowels 

• H1: Our model will be able to classify the 5 vowels of the Spanish language with 

accuracy above chance level (>20%) in the Imagined speech condition. 

o H1.1: Within the frequency bands, vowel classification in the Imagined 

speech condition will be significantly higher when using the Beta 

frequency band.  

o H1.0: Vowel classification in the Imagined speech condition will not be 

slightly higher in Beta band in comparison with other bands.  

• H0: Our model will not be able to significantly classify the 5 vowels of the Spanish 

language above chance level in the Imagined speech condition. 

Third Hypothesis: Classification of words according to their Semantic Category 

• H1: Our model will be able to decode significantly above chance level (>16.6%) 

the semantic category of the words in imagined speech among 6 semantic 

categories: Clothing, Kitchen Utensils, Animals, Body Parts, Instruments, and 

Food. 

o H1.1: In the imagined speech condition, our model will be able to decode 

significantly above chance level (>16.6%) the semantic category of the 

words among 6 semantic categories: Clothing, Kitchen Utensils, Animals, 

Body Parts, Instruments, and Food. 
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o H1.0: Within the frequency bands, semantic category classification in the 

Imagined speech condition will be significantly higher when using the Beta 

frequency band. 

• H0: Our model will not be able to significantly decode the different semantic 

categories above chance level. 

2. Methods 

2.1. Participants  

 A total of 14 participants took part in the experiment (10 females and 4 males; 

mean age 23.36 years, SD = 3.77).  Participant 7 was excluded due to noisy signal (in 

the preprocessing process, it was impossible to detect the speech onset signals). 

According to the Edinburgh Inventory (Oldfield, 1971) to assess handedness, all of them 

were right-handed. All participants reported being native Spanish speakers, having 

normal or corrected-to-normal vision, and to not have any history of neurological 

disorder. Informed consent was obtained from all the participants before the experiment 

began. Participants were compensated for their time, receiving 10€ per hour. At the end 

of the experiment, each participant was invited to participate in a new session. If the 

participant accepted, a minimum of 24 hours separated the two sessions. Each 

participant was informed that she/he could carry out as many sessions as she/he wanted, 

until a maximum of ten sessions. As a result, two participants carried out three sessions 

and four participants carried out two sessions (22 sessions in total). In order to have a 

similar amount of data for each participant, only the data of the first session were used 

for the analyses. The data of the other sessions will be used in further studies to 

investigate the inter-sessions variability. The ethical committee of the University of 

Granada approved the experiment (4210/CEIH/2024). 

2.2. Stimuli, materials and software for stimuli presentation 

 The following stimuli were presented to the participants: 

 Syllables: A total of 95 CV (consonant-vowel) syllables were used, one for each 

of the 19 Spanish consonants combined with one of each of the five Spanish vowels (see 

Acknowledgments for the Syllable list). The syllables were centrally presented as a 

written text in white hue (Arial font, size 16) on a black background or as auditory stimuli 

via the recordings of a native female voice. Audacity 3.6.0 (with an Audio-Technica 

AT2020USB-XP microphone) was used to record and edit the auditory stimuli (track(s): 

mono; coding: 32 bits; frequency: 44100 Hz).  

 Words: To decode different semantic categories, 60 words from six semantic 

categories (10 per category) were used. The semantic categories were: 1- Kitchen 

utensils; 2- Body parts; 3- Food; 4- Musical instruments; 5- Clothes; 6- Animals. In each 

semantic category, half of the words were high-frequency words (>10/1,000,000) and 

the other half were low-frequency words (<5/1,000,000) according to the CORPES XXI 

open database from the Royal Spanish Academy (Corpus del Español del Siglo XXI 

[CORPES XXI], October 2013). The number of syllables and syllable structure 

complexity were similar between high- and low-frequency words (see Table 1). The 

characteristics of the written and auditory presentations were the same as those for the 

consonant trials. In addition, pictures illustrating each word were presented to refer to 

the participants. Most of the pictures were sourced from different normalized picture 
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databases (Adlington et al., 2009; Brodeur et al., 2010; 2014; Moreno-Martínez & 

Montoro, 2012; Saryazdi et al., 2018). For a few pictures, normalized items were 

unavailable, and these were downloaded from the Internet under the Creative Commons 

license. Adobe Photoshop software (version 2017.0.1) was used to adjust the format of 

the pictures to match those in Brodeur et al.’s (2010; 2014) studies, i.e., a 2000 x 2000 

pixels size with a white background (see Acknowledgements for the words list). For 

presentation, pictures were resized to 1000 x 1000 pixels. 

Table 1 

The number of syllables according to their structure composing the high- and low-frequency 

words. 

 Word frequency 

Syllable structure High Low 

CCV 10 8 

CCVC 0 2 

CV 52 49 

CVC 12 9 

CVCC 0 1 

CVV 3 5 

V 2 1 

VC 1 5 

Total: 80 80 

 

 Pseudowords: Additionally, 30 pseudowords were presented both as written text 

and as auditory stimuli. Pseudowords were created using the same syllables composing 

the 60 words, maintaining the same syllable order (e.g., the “wi” syllable is in the second 

place in the word “kiwi” and pseudoword “awi”), but changing the combinations between 

the syllables. This strategy ensured similar syllable complexities and frequencies 

between words and pseudowords. 

 Other stimuli: A plus sign “+” was used as the fixation point. A left and a right 

brackets ([ ]) with a 22 characters spacing between them were used during the stimulus 

presentation (except for pictures) and until the end of the response. Three asterisks 

(“***”) indicated the speech onset. The auditory or the written word “silencio”, or an iconic 

picture showing a person shushing where used to indicate to not produce any speech in 

that trial. The characteristics for the presentation were the same as those for the other 

stimuli. 

 Auditory Presentation: Auditory stimuli were presented through two 

loudspeakers located next to the left and right of the screen. 

 Software: The PsychoPy program (Peirce et al., 2019) was utilized for 

programming the experiment and for stimuli presentation.  

 2.3. Procedure  

 At the beginning of the experiment, participants were shown the informed consent 

form. They were informed that they could ask any questions related to the experiment to 

the experimenter. They were also informed that they could leave the experiment at any 

moment without any penalty. During this time, the participant's head was measured, and 



18 
 

the EEG cap was fitted. Fitting the cap and applying the conductive gel took between 20 

to 40 minutes. 

Afterwards, the syllables block began, participants were instructed that they would 

alternate between an imagined speech task (covert speech) and a speaking aloud task 

(overt speech) every 20 trials. Specific instructions were provided at the beginning of 

each set of 20 trials, and participants could take a short pause during this time. Before 

the experimental trials, two practice blocks of six trials each were presented to the 

participants (with different syllables), one for the imagined speech task and another for 

the speaking aloud task. In the experimental blocks, each syllable was presented once 

as a written stimulus and once as an auditory stimulus in each task: imagined speech or 

speaking aloud. Additionally, 20 trials were included, 10 in each task, where the 

participant was instructed to not speak or to not imagine speaking (10 trials with the 

written and 10 trials with the auditory instructions). The total number of experimental 

trials in the syllable block was 400.   

Following the syllables block, the words-pseudowords block was presented. Again, 

participants were instructed that the imagined speech and the speaking aloud tasks 

would alternate every 20 trials. There was also a practice block for the imagined speech 

task and another for the speaking aloud task, each block comprising eleven trials (with 

words and pseudowords that differed from the experimental trials). In each task 

(imagined speech or speaking aloud) of the experimental blocks, each word was 

presented once pictorially, once as a written text, and once as an auditory stimulus, and 

each pseudoword was presented once as a written text and once as an auditory stimulus. 

Additionally, five silent trials were included in each condition (with the word "silencio" – 

"silence" being presented as written text or auditorily). During the silent trial, participants 

were asked to remain silent. Additionally, in each task (imagined speech or speaking 

aloud), 15 trials (5 pictures, 5 written and 5 auditory trials) instructed the participant to 

not speak. The total number of experimental trials in the words-pseudowords block was 

510. 

In the syllables and the words-pseudowords blocks, all the stimuli were presented in 

random order within each task. The practice blocks were presented only during the first 

session. 

The trial structure in the syllables block was as follows (see Figure 6a). First, a fixation 

cross was presented for a randomly varying time between 1000 and 1500 ms. Then, the 

brackets and the syllable or the silent word were presented (as a written text or as an 

auditory stimulus) for 750 ms. It was followed by a screen where only the brackets were 

presented during a period that varied randomly from 1000 to 1500 ms. Afterwards, the 

brackets plus the three asterisks indicating the onset of speech were presented for 1500 

ms. Finally, an inter trial interval was presented for 500 ms. The trial structure in the 

words-pseudowords block was similar to that of the syllables (see Figure 6b), with the 

following exceptions: the word or pseudoword was presented for 1000 ms (instead of 

750 ms), the words (but not the pseudowords) were also presented as a picture, and the 

three asterisks indicating the onset of speech were presented for 2000 ms (instead of 

1500 ms).  
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The entire session lasted around one hour and a half.  

   

2.4. EEG and Voice Recordings 

 The EEG signal was recorded using a 64-channel system mounted on a cap 

(actiCAP snap, Brain Products) and the Brain Vision Recorder Software (version 

1.20.0601) was used to calibrate the electrode montage. The EEG signal was amplified 

thanks to a actiCHamp amplifier (Brain Products GmbH, Munich, Germany). Electrode 

placement followed the international 10-20 system. Impedances were kept below 10 kΩ 

in areas of interest, with an attempt to lower impedances in other electrodes, setting a 

limit of 20 kΩ. Although the supplier recommends reducing impedance to 5 kΩ, time 

constraints made this unfeasible. The signal was digitized at a sampling rate of 1000 Hz 

and referenced with electrode FCz. Eye movement activity was monitored using two 

electrooculogram (EOG) electrodes. 

In addition to the EEG, the participant's voice was also recorded using the AudioCapture 

software from the Lab Streaming Layer (LSL) library (Copyright (c) 2021 Christian Kothe, 

Tristan Stenner) at 44.1 kHz and 16 bits per sample. This was accomplished using an 

Audio-Technica AT2020USB-XP microphone placed about 20 cm from the participant’s 

mouth. This microphone is a cardioid condenser, which allows for sound collection from 

a single direction. This design helps reduce extraneous noises and reverberations from 

the room where the task is performed. To reduce popping sounds, a pop filter was placed 

between the microphone and the participant at 3 cm from the microphone. 

EEG, audio recordings and task-specific markers were synchronized using Lab 

Streaming Layer (Kothe et al., in press) with the LabRecorder (Copyright (c) 2012 

Christian Kothe) extension. Additionally, BrainVision LSL viewer (Pfurtscheller & Neuper, 

2001) was used to visualize online recordings. 

2.5. EEG Analysis and Preprocessing 

 For the analysis and subsequent preprocessing of the data, the MNE library in 

Python (Gramfort et al., 2013) was employed, utilizing the Visual Studio Code source 

code editor. The primary aim of the analysis and preprocessing was to filter the data to 

Figure 6  

a) Order of presentation of the stimuli in the syllables block. b) Order of presentation of the stimuli 

in the words-pseudowords block 

a) b) 
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facilitate the model's extraction of the most pertinent features from the waveforms (See 

Table 2).  

Table 2 

Number of stimuli used to obtain the Morlet wavelets per participant. 

 
Type of Stimuli 
 
 
Production 
 
 
 
 
Vowels 
 
 
 
 
 
Semantic 
 
 

 
Stimuli 
 
Real 
Imagined 
Silence 
 
a 
e 
i 
o 
u 
 
Body Parts 
Kitchen 
Food 
Animals 
Clothes 
Instruments 

 
Stimuli Quantity 
 
200 
200 
20 
 
38 
38 
38 
38 
38 
 
27 
27 
27 
27 
27 
27 

 

The data was divided into epochs of 1500 ms, commencing at the beginning of the 

speech onset signal. The preprocessing and artifact removal procedure followed five key 

steps: 1- A notch filter was applied at 50 Hz and its first harmonic (100 Hz); 2- Based on 

Time-Frequency analysis to identify optimal frequencies for decoding, a band-pass filter 

ranging from 1 to 120 Hz was implemented; 3- Independent Component Analysis (ICA; 

See Supplementary Material Figure 1) was conducted to eliminate artifacts associated 

with eye blinks; 4- Morlet wavelets were extracted by performing a Fast Fourier 

Transform (FFT) on the frequency bands alpha (8 - 12 Hz), beta (13 - 30 Hz), gamma 

(30 - 50 Hz), high gamma (50 - 120 Hz) and general band (1 -120 Hz) for the conditions 

corresponding to the types of speech (Rest, Imagined speech and Overt speech), the 

vowels (5 vowels plus the silence trials when producing imagined speech speech) and 

the six semantic categories (when producing imagined speech); 6- After obtaining all the 

Morlet wavelet analyses, the data were segmented into the aforementioned categories 

(See Supplementary Material Figure 2). 

2.5.1. Time-Frecuency Analysis and Morlet Wavelets 

 Firstly, the frequency bands to be used were established: Alpha, Beta, Gamma, 

High Gamma, and a general band that encompassed all the bands (1-120 Hz). 

Subsequently, for each vowel and frequency band, the Morlet wavelet was extracted, 

with the number of cycles appropriate to the Hz of the frequency band being utilized (see 

Figure 7). The Morlet wavelet is one of the best time-frequency analyses for decoding 

and subsequently classifying non-stationary waveforms, where spectral densities 

change easily (Min et al., 2016). The Morlet wavelet was extracted for each channel, 
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although it is also possible to perform this extraction through a cross-variance matrix of 

the EEG channels (Panachakel et al., 2021; Lua et al., 2022).  

 

2.6. Statistical Analyses 

To the hypothesis about the differences brain oscillations in the decoding of 

imagined speech, we conducted a Wilcoxon signed-rank test to compare the 

classification accuracy between the following conditions: Rest, Imagined speech and 

Overt speech across the Alpha, Beta, Gamma, High Gamma and General frequency 

bands. We applied the same procedure to compare classification accuracy in the vowels 

classification and the semantic categories classification. 

𝑋` =  
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛𝑥
 

Additionally, to assess the model's performance against chance, we used the Wilcoxon 

signed-rank test to compare the accuracy for the types speech classification, vowels 

classification, and semantic categories classification relative to chance levels (33%, 

20%, and 17%, respectively). 

The typical 80-20% data split was applied (LeCun, 2015), where 80% of the data was 

allocated for model training, while 20% were reserved for assessing the generalization 

capability, using them as test data. 

2.7. Classification Analysis 

 The data was subjected to normalization using min-max scaling (See Figure 8), 

adjusting the values to the [1, -1] scale, allowing all values to be on a common scale. 

This enabled our models to converge more quickly and optimization processes to be 

performed more efficiently. Once the data normalization was completed, a variant of the 

Convolutional Neural Network (CNN) with characteristics of a Recurrent Neural Network 

Figure 8 

The formula for Min-Max scaling 

 

Figure 7 

Distribution of Morlet wavelet power in electrode T7 for the High Gamma (left) and 

Gamma (right) frequency bands in the pilot participant for the vowel 'a'. 
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(RNN) was applied. For this model, several layers of Gated Recurrent Units (GRUs) were 

used. 

2.7.1. Convolutional Neural Network (CNN) + Gated Recurrent Unit 

The architecture of our model consists of three parallel 1D convolutional 

(Conv1D) layers, which sequentially apply convolutional operations to capture both 

spatial and temporal features from the data 

(Szegedy et al., 2015; Roy et al., 2019). This 

structure was derived from the deep learning 

algorithms used by Roy et al. (2019) for the 

decoding of electroencephalographic signals in 

patients with schizophrenia and adapted for the 

decoding of imagined speech. These layers are 

followed by several densely connected GRU 

layers (See Figure 9) through feed-forward 

connections. The use of multiple parallel Conv1D 

layers allows the model to explore various filter 

sizes and extract diverse types of features that a 

single filter type might miss. Additionally, the 

incorporation of densely connected GRU layers 

addresses the gradient explosion and degradation issues commonly associated with 

RNNs. As of this writing, no similar network has been reported in the literature for 

decoding imagined speech from EEG data. 

For model training and parameter tuning, a learning rate of 0.001 and the Adam optimizer 

were employed. These settings were chosen due to their widespread use and 

effectiveness in training models for decoding Imagined speech from EEG data 

(Abdulghani et al., 2023; See Figure 10 for a representation of the training accuracy and 

training loss of the model across different epochs for linguistic production discrimination 

between Rest, Imagined and Real speech for the participant number 8). 

 

Figure 9 

Pictorial representation of a Gated 

Recurrent Unit 

Figure 10 

Model training process across different epochs in general band (1-120 Hz) for linguistic 

production discrimination: Imagined vs. Rest vs. Real in the participant number 8. 
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3. Results 

3.1.  Differences in the types of speech production 

 The initial results of our investigation focused on distinguishing between the three 

types of linguistic production (Rest, Imagined speech and Overt speech), as this step is 

crucial for determining whether the model confuses Imagined speech with Rest 

(Supplementary Material Figure 3). This approach is relatively novel, as pre-decoding 

manipulation checks for vowels/words/phrases are uncommon in the literature (Lopez-

Bernal et al., 2022). For each participant, the EEG data collected corresponded to 200 

trials for the Imagined speech condition, 200 trials for the Overt speech condition and 20 

trials for the Rest condition (All of them per participant). Due to the significant imbalance 

in the number of trials between the Overt and Imagined Speech conditions compared to 

the Silent Speech condition, proportional weighting was applied to ensure balance in the 

analysis. The model's accuracies for individual participants ranged from 60% to 94.67% 

using the general band and these classification results were significantly higher than the 

33% of chance accuracy level (see Table 2; Figure X). These results provide a basis for 

believing that our model can effectively classify data within the context of imagined 

speech. The accuracies observed are consistent with findings reported in the literature, 

where Convolutional Neural Networks (CNNs) have demonstrated high precision in 

decoding various datasets (Cooney et al., 2020).  

Table 2  

Accuracy of the model compared to the chance level in classifying Rest vs. Imagined speech vs. 

Overt speech on general frequency band using the Wilcoxon signed-rank test 

Accuracy 

Median (%) 

Z-score p-value 
Reference value 

91% 26.95 < .001 33% 

 

Figure 11 

Mean classification accuracy for each participant across Imagined Speech, Overt Speech, and 

Rest conditions using the general band (1-120 Hz). 
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It was also hypothesized that the four frequency bands (Alpha, Beta, Gamma and High 

Gamma) would provide enough information to significantly discriminate the EEG data 

corresponding to each type of linguistic production. Accordingly, the classification 

accuracies were statistically above the chance level for each frequency band (see Table 

3; Supplementary Material Figure 4). These findings confirm that our model does not 

confuse imagined speech with silence. With this validation in place, we can now proceed 

to evaluate whether our model is capable of decoding vowels and semantic categories 

within imagined speech. 

Table 3 

Discrimination accuracy compared to chance level in classifying Rest vs. Imagined speech vs. 

Overt speech across the different frequency bands using the Wilcoxon signed-rank test 

Frequency 

bands 

Accuracy 

Median (%) 
Z-scores p-values 

Reference 

value 

Alpha 90% 32.35 < .001 33% 

Beta 92% 38.22 < .001 33% 

Gamma 76% 10.54 < .001 33% 

High Gamma 76% 10.79 < .001 33% 

 

However, when comparing bands between them, significant differences in accuracy 

were observed between all of them, except for the comparison between the Alpha and 

the Beta bands, and the comparison between the Gamma and the High Gamma bands 

(see Table 4). These results underscore the critical role of the Alpha and Beta bands in 

the overall decoding performance of imagined speech. 

Table 4  

Wilcoxon signed-rank tests between all the frequency bands for the classification 

of Rest vs. Imagined speech vs. Overt speech 

Comparison Z-scores p-values 

Alpha vs. Beta 27.0 .345 

Alpha vs. Gamma 7.0 .004 

Alpha vs. High Gamma 11.5 .017 

Beta vs. Gamma 7.0 .004 

Beta vs. High gamma 4.0 .009 

Gamma vs. High gamma 36.0 .81 

 

Figure 12 

(a) Confusion Matrix for Vowel Classification in General Band (1-120 Hz) of Participant 10. This 

figure displays the confusion matrix for the classification of the five vowels. The values on the main 

diagonal indicate the number of correct predictions, while the off-diagonal values reflect the 

misclassifications between classes. The colors in the matrix represent the frequency of classifications, 

with more intense colors indicating a higher number of predictions. (b) UMAP Projection of Vowels 

in General Band (1-120 Hz) of Participant 10. This figure presents the UMAP projection of the five 

vowels in a reduced feature space. Each point represents a vowel, with colors indicating the 

corresponding classes. The figure illustrates how the vowels are grouped and separated in the 

reduced space, aiding in the evaluation of the model's differentiation capability. (c) and (d) are the 

same for the participant 14. 
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3.2. Vowel Decoding in Imagined Speech 

Each participant was asked to produce 38 times each vowel (each vowel 

combined with each of the 19 consonants, presented once with in the written format 

and once in the auditory format) in the syllables production task. According to the 

second main goal of this study, we concentrated on classifying the 5 vowels from the 

EEG data in the imagined speech task with the goal of achieving fine-level 

classification accuracy. Our model achieved an average accuracy of 92% for vowel 

classification using the general band (Supplementary Material Figure 5). This 

classification result was significantly higher than the chance level of 20% and signifies 

a notable advancement in the field of imagined speech decoding, particularly in 

distinguishing among specific vowel classes. Classification results of two participants 

are represented in Figure 10. Our model demonstrates strong performance, aligning 

closely with established models (e.g., Hossain et al., 2024) and contributing valuable 

insights into the decoding of vowels through imagined speech.   

When comparing the decoding accuracy with randomized data (20%) on each frequency 

band, we observed performance levels that were significantly above chance in each of 

them (see Table 5; Supplementary Material Figure 6). These results underscore that 

linguistic information can be decoded on all evaluated frequency bands: Alpha, Beta, 

Gamma, and High Gamma. However, it is important to note that some studies reported 

higher classification accuracies in higher frequency bands (e.g., Koizumi et al., 2018). 

Nevertheless, there is considerable debate about the reliability of these results due to 

a) b) 

c) d) 
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potential muscular artifacts and signal-to-noise ratio issues. Specifically, high gamma 

activity in EEG signals is often suspected to be influenced by muscle artifacts rather than 

reflecting true neural activity (Panachakel & Ramakrishnan, 2021). This skepticism is 

supported by findings suggesting that the gamma band may suffer from a lower signal-

to-noise ratio and that its power decreases with increasing frequency, following a 1/f 

power law (Panachakel & Ramakrishnan, 2021; Koizumi et al., 2018). 

Table 5 

Discrimination accuracy compared to chance level in classifying the vowels across frequency  

bands using the Wilcoxon signed-rank test 

 

Thus, in order to evaluate the relative effectiveness in vowel decoding in the Alpha (8-12 

Hz), Beta (13-30 Hz), Gamma (31-50 Hz) and High Gamma (51-120 Hz) bands, we 

conducted Wilcoxon signed-rank tests to compare the decoding differences across these 

frequency bands (see Table 6). Following the proposed hypothesis, our results 

highlighted the effectiveness of using the Beta and Alpha bands for decoding imagined 

speech. While no significant difference was observed between these two bands, all the 

other, the accuracy levels on all the other bands were significantly lower, being lowest 

for the high gamma frequency. Figure 11 represents the distribution of the accuracy data 

across each frequency band compared to a random classification.  

Table 6  

Statistical comparisons of frequency bands for vowel decoding using the Wilcoxon signed-rank 

test 

 

In order to analyze how well the model avoids false positives and captures true positives 

in each band, we used a metric frequently used in the fields that use Deep Learning or 

Machine learning models (Panachakel & Ramakrishnan, 2021), the F1 score. This metric 

combines two other metrics: Precision and Recall. In our case the Precision value 

corresponds to the accuracy of the model in predicting the specific vowels (a high 

precision means that the model makes few false positive errors) and the Recall value 

corresponds to model's ability to identify all instances of the specific vowels correctly (a 

high recall means that the model makes few false negative errors). The formula to 

Frequency 

bands 

Accuracy 

(means) 

Z-scores p-values Reference  

value 

Alpha   87.58% 33.38 < .001 20% 

Beta   88.06% 29.11 < .001 20% 

Gamma   80.80% 10.54 < .001 20% 

High Gamma       63.34% 10.12 < .001 20% 

Comparison Z-scores p-values 

Alpha vs Beta 39.0 .684 

Alpha vs Gamma 14.0 .026 

Alpha vs High gamma 1.0 < .001 

Beta vs Gamma 14.0 .026 

Beta vs High gamma   2.0  < .001 

Gamma vs High gamma            3.0 < .001 
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calculate the F1 score is as follows: 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
. As a result, a score of 1 indicates 

the best performance (perfect precision and recall) and a score of 0 indicates the worst 

performance. As shown in Figure 12, the highest F1 scores were observed with the Alpha 

and the Beta bands data, followed by the data of the gamma band and the lowest F1 

score was observed with the High gamma data (see Figure 12).  

These analyses suggests that, in contrast to the High Gamma band, the Beta and Alpha 

bands offer more reliable information for decoding imagined speech. These results 

contrast with the inconsistent findings regarding the use of information from the higher 

frequency bands (e.g., Koizumi et al., 2018) and align with existing literature, which often 

highlights the superior classification performance with data from the Beta and Alpha 

bands across various cognitive and speech-related tasks (Hossain et al., 2024).        

3.3. Semantic categories decoding in Imagined Speech 

In this section, we present the application of our model using Morlet wavelets for different 

semantic categories: Clothing, Kitchen Utensils, Animals, Body Parts, Instruments, and 

Food. With six categories in total, the probability of random guessing resulting in a correct 

classification was 16.66%. This aspect is particularly significant in the context of 

Semantic Silent BCIs (SS-BCIs), which aim to address the challenge of decreasing 

model accuracy as more words are decoded. Despite the promising potential of SS-BCIs, 

the literature on this topic remains limited. To the best of our knowledge, the study by 

Rekrut et al. (2021) is the only one that has addressed this methodology in EEG-based 

imagined speech studies. Rekrut et al. (2021) proposed a method for first discriminating 

the semantic category of a word and then selecting the specific word within that category, 

achieving an accuracy of 43.54%. This approach shows potential for increasing the 

number of decodable words by utilizing semantic categories. However, the application 

of semantic categories to expand the decodable vocabulary has not been extensively 

explored, primarily due to the challenges associated with decoding EEG signals linked 

to various semantic categories during imagined speech. Consequently, accurately 

Figure 12.  

F1 scores with Alpha, Beta, Gamma and High gamma bands data when classifying vowels 



28 
 

decoding EEG signals associated with different semantic categories during imagined 

speech remains one of the primary objectives in this field.  

In the words-pseudowords block, participants were asked to produce 60 stimuli per 

semantic category (10 words being presented in the auditory, written or picture format 

and being produced in imagined or overt speech). The average accuracy across all 

participants was 84.88% using the general frequency band, ranging from 33% to 100% 

(see Figure 13; see Supplementary Material Figure 7). 

To evaluate performance across different EEG frequency bands, we conducted 

Wilcoxon signed-rank tests on each frequency band. The results showed that the 

classification accuracy was above chance on each band (see Table 7; See 

Supplementary Figure 8).  

Table 7 

Discrimination accuracy compared to chance level in classifying the vowels across frequency  

bands using the Wilcoxon signed-rank test 

Comparison 

 

Z-scores 

 

p-values 

 

Alpha vs Beta 39.0  0.684 

Alpha vs Gamma 14.0   0.026* 

Alpha vs High Gamma 1.0 p > 0.001 

Beta vs Gamma 14.0  0.026 

Beta vs High Gamma 2.0 p > 0.001 

Gamma vs High Gamma 3.0  0.001 

 

Additionally, we performed a Wilcoxon signed-rank test to compare the accuracy 

between the different frequency bands. The results, summarized in Table 8, indicate no 

Figure 13  

Individual participants’ accuracy compared to chance in decoding Morlet wavelets for semantic 

categories 
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significant difference between the Alpha and Beta bands, but significantly lower scores 

for the Gamma band data and the lowest scores for the High gamma band data (see 

Table 8; see Figure 14). These results suggest that while overall performance is high, 

there are significant differences in accuracy depending on the frequency band used. 

Table 8 

Statistical comparison of frequency bands for vowel decoding using the  

Wilcoxon signed-rank test 

Comparison Z-scores p-values 

Alpha vs Beta 39.0 .684 

Alpha vs Gamma 14.0 .026 

Alpha vs High Gamma 1.0 < .001 

Beta vs Gamma 14.0 .026 

Beta vs High Gamma 2.0 < .001 

Gamma vs High Gamma 3.0 .001 

 

Figure 14 

F1 scores with Alpha, Beta, Gamma and High gamma bands data when classifying semantic 

categories. 
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4. Discussion 

 This study focused on the decoding of imagined speech using deep learning 

models, an area of great relevance for the development of brain-computer interfaces 

(BCIs). The advancement of such technology is particularly crucial for assisting 

individuals with severe communication impairments, such as those caused by 

amyotrophic lateral sclerosis (ALS). Over the past decade, the interest on this topic has 

increased and various methodologies focusing on different neural oscillations have been 

explored. As a result, the field has become somewhat fragmented, with diverse 

approaches and models emerging. This study aimed to provide a comprehensive 

overview of different methodologies relevant to imagined speech decoding.  

The use of statistical analysis in our study is particularly noteworthy, as the field typically 

prioritizes decoding accuracy measures without the use of any statistical test. These 

analyses allowed us to confirm the statistical significance of the results.  

4.1. Types of speech production decoding 

 Our initial analyses focused on distinguishing between imagined speech, overt 

speech, and rest. These analyses are instrumental in assessing whether or not our 

model can effectively differentiate imagined speech from rest and/or overt speech. Our 

results demonstrated that the model can accurately distinguish between the production 

speech versus without the involvement of the articulators. They also demonstrated that 

it is possible to distinguish the production of imagined from the absence of speech 

production (the Rest condition).  The statistical results indicated that our model not only 

classifies EEG signals associated with imagined speech effectively but also performs 

well beyond random guessing. Although these results may not represent a novel 

breakthrough in the field, they validate the operational effectiveness of our model, 

ensuring that it performs reliably under the tested conditions. 

4.2. Vowels Decoding 

 Decoding vowels from imagined speech is not entirely novel; early studies 

achieved above-chance performance in vowel decoding as early as 2016 (Min et al., 

2016; Coretto et al., 2017). More recently, LaRocco et al. (2023) achieved an impressive 

98% accuracy in decoding English phonemes. Our study, however, represents a 

pioneering effort in the effective decoding of vowels from imagined speech in Spanish. 

Notably, previous attempts, such as those by Coretto et al. (2017), showed performance 

levels close to chance and lacked statistical analysis to ascertain the significance of their 

findings. In contrast, our study achieved an average accuracy of 92.06% in vowel 

decoding, making it the most accurate study to date for vowel decoding in Spanish. 

Research into neural oscillations associated with imagined speech is relatively recent 

(Proix et al., 2022). This field remains contentious due to the challenges linked with high-

frequency bands. Studies utilizing electrocorticography (ECoG) have indicated that the 

High Gamma band (80-120 Hz) often demonstrates superior performance in decoding 

imagined speech (Panachakel & Ramakrishnan, 2021). However, the use of high-

frequency bands in EEG studies is debated due to their lower signal-to-noise ratios and 

potential for artifact contamination (Panachakel & Ramakrishnan, 2021). For instance, 

Synigal et al. (2020) argued that frequency bands above Beta are often contaminated, 

making frequencies above 30 Hz less useful for decoding purposes. 
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Our results are consistent with the findings of Hossain et al. (2024), who identified the 

Alpha (8-12 Hz) and Beta (13-30 Hz) bands as particularly effective for classifying letters 

and digits. In addition to these bands, we also used analyses that included higher 

frequency bands, primarily due to the ongoing controversy surrounding the High Gamma 

band. We found that the Beta and Alpha bands offered a more reliable information for 

decoding imagined speech compared to the Gamma and the High Gamma bands. 

Nevertheless, our results indicated that reliable information form the Gamma and High 

gamma bands could be used to classify the vowels. This finding challenges the 

hypothesis put forward by Synigal et al. (2020), which suggested that frequencies above 

Beta are not useful due to contamination. Our results indicate that Gamma and High 

gamma bands remain quite useful for decoding tasks, despite their known issues with 

artifact contamination. 

4.3. Semantic categories decoding 

 One of the most significant findings of our research is the remarkably high 

performance in semantic decoding from EEG signals, an area that has shown limited 

results in the scientific literature to date. Our model achieved an average accuracy of 

84.88% in semantic categorization, with a chance level set at 16.6%. This result 

significantly surpasses the benchmark previously established by Rekrut et al. (2021), 

who reported an accuracy of 44.54% in similar tasks, with a chance level of 20%. This 

advancement represents an important step forward in the field of Brain-Computer 

Interfaces (BCI), particularly in enhancing the ability to interpret neural signals associated 

with the semantics of imagined speech. 

The study by Rekrut et al. (2021) was pioneering in addressing semantic decoding using 

EEG, but it faced several limitations that our model has successfully overcome. One of 

the primary challenges in semantic decoding lies in the diffuse and complex nature of 

semantic representations in the brain. Rekrut et al. utilized basic machine learning (ML) 

algorithms, such as Random Forest (RF) and Support Vector Machine (SVM), which may 

have constrained their classification performance. In contrast, our study leverages deep 

learning (DL) models that combine features from convolutional and recurrent neural 

networks, along with advanced optimization algorithms like Adam, which have 

significantly improved semantic decoding performance. 

This work introduces significant contributions to the existing literature, particularly in the 

development of Semantic Silent Speech BCIs. These systems use a semantic 

classification stage prior to word classification, enabling a substantial increase in the 

number of words our algorithm can accurately decode. These advancements hold the 

potential to enhance the effectiveness and applicability of BCI systems for imagined 

speech decoding, offering new opportunities for individuals with severe communication 

disabilities (Rekrut et al., 2021). 

Moreover, our statistical analyses highlighted the importance of the Alpha (8-12 Hz) and 

Beta (13-30 Hz) bands in semantic categories decoding, similar to our findings in vowel 

decoding. However, it is important to note that somewhat less reliable information could 

also be used from the Gamma and High gamma bands. To the best of our knowledge, 

no other semantic classification study has evaluated the effectiveness of the different 
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frequency bands in semantic categorisation, making our findings a potential contribution 

to the state-of-the-art techniques aimed at decoding semantic information from EEG 

signals. These differences underscore the superiority of the Alpha and Beta bands over 

the Gamma and High Gamma bands when decoding semantic information is of interest.  

4.4. Future Directions 

4.4.1.  Transfer Learning 

 The field of computational neuroscience is rapidly evolving, and the algorithms 

developed in this work may be surpassed within a short span of time. To keep pace with 

the state-of-the-art techniques, particularly in EEG-based decoding of imagined speech, 

one of the most promising directions for future research is the development of transfer 

learning algorithms. Specifically, the application of Riemannian manifold-based 

techniques holds significant potential for advancing in this field, as it is already being 

applied in other areas of EEG decoding, such as motor decoding, which is also linked to 

the development of BCIs (Xu et al., 2021). 

Transfer learning is crucial for addressing one of the most persistent challenges in EEG 

research: the high inter-participants variability. EEG signals are notoriously difficult to 

generalize across different individuals due to the unique neural signatures of each 

person. Traditional machine learning models often struggle with this variability, requiring 

extensive retraining for each new user, which is both time-consuming and inefficient. By 

leveraging transfer learning, it becomes possible to extrapolate and adapt the learned 

features from one participant to another, thereby reducing the need for individualized 

training sessions and improving the system's scalability (Cooney et al., 2019). 

Riemannian manifolds offer a powerful framework for this purpose. They allow for the 

representation of EEG data in a way that captures the underlying geometric structure of 

the brain's activity patterns. This representation can facilitate the transfer of knowledge 

across participants by aligning the neural data from different individuals in a common 

space. In this space, the intrinsic properties of the EEG signals are preserved, making it 

easier for algorithms to generalize across participants with minimal loss of accuracy. The 

use of Riemannian manifold-based transfer learning could, therefore, significantly 

enhance the adaptability and robustness of EEG-based imagined speech decoding 

systems. 

4.4.2. Semantic Decoding 

 Another promising avenue for future research is the development of a hierarchical 

decoding interface that first identifies the semantic category of the imagined word and 

then decodes the specific word within that category. This two-stage decoding process 

could potentially lead to more accurate and efficient decoding. By initially narrowing down 

the possible words through semantic categorization, the system can focus on a smaller 

set of candidate words, thereby reducing the complexity of the decoding task and 

improving overall performance (Rekrut et al., 2021). 

4.5. Limitations 

 One of the primary limitations of this study is the inter-subject variability, a 

problem closely linked to the use of EEG. Despite ensuring that impedance did not drop 
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below 20Ω, the variability was particularly noticeable in the average semantic decoding 

accuracy, where two participants had a precision near 35%. This limitation is especially 

important when considering future research directions, such as the aforementioned 

transfer learning. We are now intending to train our DL on a database created with 

previous participants (Cooney et al., 2018), in order to investigate if it can generalize to 

new participants. This is the major challenge in developing BCIs for imagined speech 

decoding. Due to the high inter-participants variability, developing an effective non-

invasive neuroprosthesis is extremely difficult. 

Another limitation is the low number of participants. While it is common in this field to find 

works with 10 participants or fewer (Abdulghani et al., 2023), increasing the number of 

participants could aid in the generalization of imagined speech decoding algorithms. 

However, it is important to consider that this kind of research is time demanding, each 

session lasting around three hours and a half plus the preparation time and the cleaning 

of the electrodes and the cap after each session. 

5. Conclusion 

 In this study, we demonstrated the efficacy of deep learning models in decoding 

imagined speech from EEG signals. Our research addressed several key issues in this 

field, including differentiating between imagined speech, overt speech, and rest as a 

manipulation check in decoding (Zhao and Rudznick, 2014), as well as classifying 

vowels and semantic categories. The results provide valuable insights into the relative 

effectiveness of using different EEG frequency bands and introduce a new decoding 

methodology. One of the most notable findings is that the Alpha (8-12 Hz) and Beta 

(13-30 Hz) bands are more informative than the Gamma and High Gamma bands for 

decoding both vowels and semantic categories. Our model showed to be similarly 

efficient compared to other state-of-the-art models in classifying vowels (Hossain et al., 

2024) and surpassed recent benchmarks in semantic categories classification (Rekrut 

et al., 2021). These results opens promising avenues for the development of new 

Brain-Computer Interfaces (BCIs) for individuals with severe communication 

impairments, like allowing a reduction of the vocabulary search by the BCI thanks to 

the identification of the semantic categories. 

6. Acknowledges 

 To ensure that the analyses conducted, and the structure of the deep learning 

model are as transparent as possible, a GitHub repository with all the information is 

available upon request. https://github.com/ibonvales/Decoding-of-imagined-speech-in-

EEG-by-Deep-Learning.git 
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Independent Component Analysis of the Pilot Participant's Data. 
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Figure 2 

Diagram flow of stimuli presentation, EEG preprocessing, and wavelet classification. 
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Figure 3 

Average of signals from all channels for the three conditions of the pilot participant’s data. First 

image corresponding to real speech, second image corresponding to imagined speech and third 

image corresponding to silence condition. 
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Figure 4 

Violin plots representing the distribution of the accuracy data in classifying Rest vs. Imagined 

speech vs. Overt speech across across the Alpha, Beta, Gamma and High gamma frequency 

bands compared to a random classification on each band. 

 

 
 

Figure 5 

Mean classification accuracy for each participant across vowel classification 
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Figure 6 

Violin plot representing the distribution of the accuracy data in classifying the vowels across the 

Alpha, Beta, Gamma and High gamma frequency bands compared to a random classification. 

 
 

Figure 7 

Mean classification accuracy for each participant across semanticl classification 

 

 
 

 



48 
 

Figure 8 

Violin plot representing the distribution of the accuracy data in classifying the semantic 

categories across the Alpha, Beta, Gamma and High gamma frequency bands compared to a 

random classification. 

 

 


