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Abstract

Phase information resultant from the harmonic analysis of
the speech can be very successfully used to determine the
polarity of a voiced speech segment. In this paper we present
two algorithms which calculate the signal polarity from this
information. One is based on the eftect of the glottal signal on
the phase of the first harmonics and the other on the relative
phase shifts between the harmonics. The detection rates of
these two algorithms are compared against others established
algorithms.

1. Introduction

The speech signal is asymmetric in amplitude. The polarity of
the speech stems from the asymmetric shape of the glottal
excitation pulses. When a microphone converts the speech
pressure waves into electrical signals, they may end up
inversed depending on the electrical polarity connection of the
device. Human ear is insensitive to this up-down inversion,
but it affects several speech processing techniques, as it is
explained next.

In the speech synthesis field, some of the most important
state-of-the-art systems are based on selection and
concatenation of units taken from a large corpus. If the
synthesis corpus is recorded in different sessions or using
different recording devices, there may be polarity
inconsistencies between different sessions. When two units
with different polarity are concatenated a phase discontinuity
can appear. Such discontinuities are not perceived by listeners
if they occur in unvoiced or low-energy segments, but they are
perceptually important if they occur in the middle of vowels,
as reported in [1]. Therefore, correct polarity determination
would eliminate an important source of synthesis artifacts.

There are also many techniques both for speech synthesis
and analysis, which are pitch synchronous. So, they require
marking the beginning and end of every pitch period. These
pitch marks are used as reference points for segmentation,
concatenation and manipulation of speech signals. In order to
detect meaningful and consistent pitch epochs, it is usual to
search for instants related to the closure of the glottal folds in
the larynx of the speaker, which are linked somehow to the
positive and negative peaks of the waveform. A usual criterion
is to choose either positive or negative local maxima as epochs
to mark the pitch period. Polarity inversion obviously affects
this criterion, as it converts maxima into minima and vice
versa. Hence, it is necessary to ensure common polarity of the
signals, to obtain a coherent pitch marking.

Robust polarity detection is also necessary in other areas
as data hiding applications [1]. Furthermore, some speech
modification techniques based on sinusoidal or harmonic
models use phase manipulation procedures that are dependent
on the polarity of the signals [2].
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In many cases, the polarity of a given speech signal can be
visually determined by comparing the sharpness of the positive
peaks with that of the negative peaks. However, the waveform
distortion introduced by noisy recording conditions or
reverberation makes the visual method less reliable, especially
for certain voices. If a whole speech database is to be analyzed
and it is known that all the recordings have the same polarity,
existing automatic polarity detection methods like [3][4] can
be applied to each recording separately and a single decision
can be taken by counting the number of positive and negative
scores. In large databases, this decision is quite reliable
regardless of the method. However, in our experience, the
same methods can have a higher error rate when applied to
automatic polarity determination of separate signals. The need
of a robust automatic polarity detector is justified by the
importance of increasing the flexibility and portability of
speech processing tools such as the above-mentioned ones
(synthesizers, analyzers, modifiers...), so that they can be used
by anyone with any voice and recording device.

In this paper we propose two new methods for automatic
polarity determination based on the phase information of the
signals. The reported experiments show that both of them are
characterized by a high accuracy and robustness, much better
than other existing techniques, being the results consistent for
many different voices and recording conditions. Due to their
characteristics, the methods are very suitable for speech
processing systems based on a harmonic model of speech.

The rest of the paper is structured as follows. In section 2
some theoretical notes about the relation between phase and
polarity are presented. Next, sections 3 and 4 explain the basis
of each method. Section 5 presents the experiments and results
of the evaluation and finally, the main conclusions of this
work are summarized in section 6.

2. Relationship between phase and polarity

From a signal processing point of view, the speaking process
can be described by a source-filter model [5]. The source
signal is the airflow crossing the glottis. In voiced sounds, it
can be represented as a train of pulses whose instantaneous
amplitude is proportional to the opening area of the vocal
cords (Figure 1a). The vocal tract is modelled as a filter }(z)
that shapes the glottal source signal in frequency according to
the position of the physical articulators, and therefore it is
characterized by a number of time-varying resonances.

The speech signal can be seen as the result of filtering the
glottal source through the vocal tract and radiating it to the
open air. The lip radiation effect can be approximated through
a derivative filter R(z). Therefore, an equivalent system is
obtained if R(z) is suppressed and the derivative of the glottal
source is used as excitation of V(z) (Figure 1b). Since the
closure of the glottis causes an abrupt variation in the slope of
the glottal source, the excitation signal looks like a train of
peaky pulses.
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Figure 1: Diagram of the source-filter model

According to Fourier’s theorem, a steady segment of the
excitation signal can be decomposed into a sum of
harmonically related sinusoids whose frequencies are
multiples of the pitch. If the excitation signal is interpreted as
a sum of harmonic sinusoids, the peaks take place at the time
instants where the sinusoids are maximally in phase. If the
peaks have positive amplitude, the phases of the harmonics are
close to zero; if the peaks have negative amplitude, the phases
are close to . When the excitation crosses the vocal tract, the
phases are slightly modified according to the phase response
of V(z). The two polarity detection methods presented in this
paper consist of measuring the harmonic parameters directly
on the speech signal and inferring whether the underlying
excitation (Figure 1b) has positive or negative peaks. They
make different assumptions about V(z):

- The Phase Cut (PC) method assumes that the phase
contribution of }(z) is negligible at lower frequencies, and
searches for the position where the two first harmonics are
in phase.

- The Relative Phase Shift (RPS) method assumes that the
evolution of the phase response of J(z) along the
frequency axis is smooth. It benefits from the fact that
when the excitation peaks are positive (the excitation
phases are close to zero) the phase increments between
harmonics near the peaks are approximately equal to the
contribution of V(z).

As the effectiveness of the methods depends on the
validity of the assumptions made above, we formulate the
hypothesis that they are valid in most of the voiced segments
of a given utterance. In this paper, we show that phase-based
detection is more robust than other approaches.

3. Phase Cut method (PC)

As it has been mentioned above, the peaks of the excitation
signal (the derivative of the glottal source) are the instants
where the phase of the sinusoids is maximally close to O or =.
Assuming that the phases are not drastically modified by the
vocal tract, a similar phase structure can be found in the
speech waveform. For a small interval centred at a given
analysis time instant f£,, the instantaneous phases of the 4-th
harmonic can be represented as a line passing by the point (z,,
o) with slope equal to k27f;, where ¢, is the phase of the
harmonic measured at 7=f, and f; is the pitch at 7, We
observed that the intersection between the phase lines of the
first and second harmonics occurred near O or either near =,
depending on the polarity of the signal. Figure 4 illustrates this
phenomenon.

The PC method consists on determining the phase where
the phase lines of the two first harmonics intersect, ¢, Since
the slopes are related by a factor 2, it is immediate to prove
that the phase value at the intersection is given by:
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Figure 2: Instantaneous phase evolution of the first
(solid) and second (dashed) harmonics.

If gy is closer to O, the excitation is considered to have
positive peaks; if @y is closer to @, the peaks are negative. For
a given utterance, a single decision can be taken by processing
all its frames separately (at 10ms frame rate) and comparing
the number of positive and negative answers. Note that the two
lowest harmonics are the best choice for several reasons: they
have only one intersection point per cycle, they are less
influenced by the vocal tract formants than others, and their
high amplitude makes their phase accurately measurable.

4. Relative Phase Shift method

The second method derives from a novel representation of the
phase information of the harmonic analysis, described in [6].
Harmonic analysis models each frame of a signal by means of
a sum of sinusoids harmonically related to the pitch or
fundamental frequency.
N
ht=>4 ‘¢ 2 A R ¢!
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where N is the number of bands, 4; are the amplitudes, p(#) is
the instantaneous phase, f; the pitch or fundamental frequency
and 6y is the initial phase shift of the -th sinusoid.

Usually, the methods used to calculate the parameters of
the model give the whole instantaneous phase of every
sinusoid, @#), instead of the initial phase shift 6,. This
instantaneous phase changes depending on the analysis instant
as well as on the frequency of the harmonic, due to the linear
phase term 2zkf,. On the contrary, the initial phase shift (8)) is
constant while the waveform shape is stable under the
assumption of local stationarity, regardless of the time instant
chosen for the analysis.

The initial phase shift determines the waveform shape of
the signal. For a given set of harmonic sinusoids the resulting
waveform shape depends only on the differences between the
initial phase shifts (6;) of the components, which we call
Relative Phase Shifts (RPS’s). These RPS’s are also constant
as long as the initial phase shifts are so. Thus, they can be
calculated at any analysis point wherever local stationarity
conditions can be assumed, avoiding the necessity of
determining any special point for the analysis. Being relative,
the RPS’s are computed using a common reference. The
fundamental frequency, FO, being the basic harmonic
component, constitutes the natural one.

We have developed an expression to obtain the relative
differences of the initial phase shifts from the measured
instantaneous phases. Let us consider two sinusoids:
A 'z
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where x1(2) will be the reference sinusoid with frequency f; and
xi(t) another sinusoid with frequency f; > fi. 8, is the initial



phase shift and ¢ stands for time. For the sake of simplicity we
will consider 8;=0, which implies setting the time origin at the
point where x;(z) has instantaneous phase 0. For any arbitrary
analysis point (¢,) the instantaneous phases are:

0

p T 6 C))

In the case of harmonic analysis, f; will be the fundamental
frequency (f;) and the frequencies of the two sinusoids will be
harmonically related, so f=kf;. Applying this condition, we get
the relative phase shift (RPS):

o ¢ 91,
Finally the RPS is wrapped to values in the [-w, nt] interval.

Among other interesting properties of the RPS’s (detailed
in [6]) a major feature is that it reveals a structured pattern in
the phase information of the voiced segments. This can be
noticed in Figure 3 which shows a “RPS phasegram”™ which,
as its magnitude counterpart the spectrogram, shows the
evolution along time of the RPS’s for each harmonic. Figure 3
shows a phasegram of the voiced speech segment of five
sustained vowels |aeiou|, where the stable pattern of every
vowel can be clearly distinguished. Smooth evolution of the
RPS’s along frequency agrees with the assumptions of smooth
vocal tract frequency response and in-phase glottal excitation.
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Figure 3: RPS phasegram of a voiced speech signal
/aeiou/.

This phase structure is sensitive to the polarity inversion as
it is shown in Figure 4, where the RPS phasegram of the up-
down inverted signal is depicted.
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Figure 4: RPS phasegram of an inverted voiced speech
segment /aeiow/.

The smoothness of the response has disappeared
producing an interleaved pattern. If the original signal is
inverted, then its instantaneous phases (¢(#)’s) are shifted n
radians. Thus the expression for the phase difterence presented
in (5), the relative initial phase shift, becomes

6 6 o o1 9o 1 0 T ()
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where ¢, and ¢, (time dependency of @) is omitted for
concision) stand for the inverted instantaneous phases. This
equation shows that the RPS’s are shifted by & but only for the
even harmonics while the odd ones remain unchanged. This
alternation explains the interleaved pattern in the phasegram,
and allows distinguishing between inverted and non inverted
speech signals.

4.1. The RPS algorithm

This algorithm exploits the above phenomenon calculating the
“ripple” of the RPS’s along frequency axis for each analysis
frame. The analysis is performed typically every 10ms on the
voiced frames only. A Hann window of three pitch period
length is used to extract the frame. It uses a previously
calculated pitch estimation using the CDP pitch detection
algorithm [7].

The RPS algorithm calculates first the RPS’s of the frame.
To do this we only need to obtain the instantaneous phases of
the model. It is not necessary to calculate all the parameters of
the harmonic model, which would require solving a quite
complex system of equations. Instantaneous phases can be
extracted in a straightforward way from the complex spectrum
calculated by a Fourier transform. Then the pitch value is used
to compute the RPS’s of the harmonic components using
equation (5), taking the instantaneous phases ¢ directly from
the value of the complex phase of the spectrum at the given
frequencies. This way, we get a number of RPS’s
corresponding to each harmonic component that lies in the
frequency spam of the signal. In fact, the analysis is limited to
the frequencies below 3 kHz, as higher components are more
severely affected by noise.

The ripple of the RPS is then calculated. To do this, the
RPS’s are first unwrapped. The absolute differences between
every harmonic and its predecessor are accumulated. The same
calculation is performed with the inverted signal. This is
actually done just by adding = (before the wrapping) to the
even RPS’s.

Finally, both sums are compared. As explained before, the
smoother the RPS’s are the smaller the sum should be. If the
non-inverted frame results smoother than the inverted one, the
frame is marked as non-inverted, and vice versa.

This decision is made for every frame of the signal and a
single final decision is taken comparing the number of frames
in each category.

5. Experiments

5.1. Evaluation databases

Nine databases with known polarity have been used to test the
proposed algorithms. Due to the dual decision of the polarity,
the probability of correct answers by chance is very high;
thereby databases have to be large in order to produce
significant results. Moreover, we have selected databases with
different features, languages and speakers allowing testing the
algorithms under very different conditions. All databases are
sampled at 16 kHz. These databases are:

e Karolina & Pello [8]: Female and male voices acted
emotional speech database in Basque language. 702
identical sentences in six emotions (happiness, anger,
fear, surprise, disgust and sadness) plus neutral for each
voice.

e TC-Star Laura DB [9]: Female UK English speaker.
Studio quality, neutral style. 5558 sentences.



e CMU ARCTIC SLT & CMU ARCTIC BDL [10]:
Female and male voices in US English with 1132
sentences for each voice, recorded by a female and a
male experienced voice talent.

e Berlin DB of Emotional Speech [11]: Acted emotional
speech in German language. 10 speakers in six emotions
(happy, angry, anxious, fearful, bored and disgusted)
plus neutral. 535 sentences altogether.

e Subset of SPEECON Spanish DB [12]: 30 male and 30
female speakers recorded simultaneously by three
channels with different SNR, wusing different
microphones and in different locations like cars, offices,
public places, etc. Channel CO, was recorded with a
close-talk microphone (SNR around 30 dB). C1 was
recorded with a Lavalier microphone and C2 with a
directional microphone 1 metre away from the speaker
(SNR around 15 dB). 1020 sentences per channel.

5.2. Compared polarity detection algorithms

As well as evaluating the two proposed algorithms, we have
tested other renowned algorithms so that we get comparative
data. These algorithms are:

e GSGW [3]: Implementation of the algorithm for speech
polarity determination based on the gradient of the
spurious glottal waveforms.

e RAPT [13]: An implementation of the robust algorithm
for pitch tracking. This algorithm uses peak detection
and dynamic programming to calculate the pitch, and
determines signal polarity in the process.

5.3. Results

Experiments have shown (Table 1) that the phase based
algorithms (RPS and PC) have very good results in almost
every database, outperforming the other methods. They
perform equally well both with male and female voices,
languages and phonation styles. For these algorithms, in
contrast to the RAPT and GSGW, we have not found any
voice for which detection performance decays noticeably.

Table 1. Results of the experiments.

RPS PC

OK __|NOK [Acc. (%) ] OK | NOK |Acc. (%)
Karolina| 4911 3| 99,94] 4901 13| 99,74
Pello 4912 2| 99,96| 4907 7] 99,86
Laura 5558 0 100 | 5558 0 100
SLT 1132 0 100] 1108 24| 97,88
BDL 1132 0 100] 1132 0 100
Berlin 534 1| 99,81| 524 11| 97,94
[ 1003 17| 98,33 993 27| 97,35
Ci 1020 0 100| 939 81| 92,06
c2 587 | 433| 57,55] 845| 175| 82,84

RAPT GSGW

OK __|NOK [Acc. (%) ] OK _|NOK | Acc. (%)
Karolina | 4810 104 | 97.88] 4590| 324| 93,41
Pello 1850 | 3064 | 37,65| 4886 28| 99,43
Laura 5557 1] 99,98 3454| 2104| 62,14
SLT 1074 58| 94,88] 1132 0 100
BDL 1111 21| 98,14] 1119 13| 98,85
Berlin 533 2| 99,63 274| 261] 51,21
[ 876 | 144| 8588| 99 24| 97,65
C1 760 260| 74,51 976 44| 9569
c2 443 577| 4343| o927 93] 90,88
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For the clean databases (i.e. excluding C2), the average
accuracy is 99,89% for the RPS and 99,19% for the PC. The
other methods give lower averages (81,93% for the RAPT and
86,17% for the GSGW).

For the noisy C2 database, the methods which use reduced
bandwidth for the analysis (PC and GSGW) limit the noise
energy and perform notably better than the methods which use
a wider bandwidth. The waveform distortion produced by
noise, atfects phase information and impacts negatively in the
results of RPS and, to a lesser extent, in those of PC.

6. Conclusions

We have presented two methods to detect the polarity of the
speech signal using phase information. Experiments prove that
this phase information is a reliable indicator of the speech
polarity regardless the type of voice, language and speaking
style, decreasing the error rate of other methods in 1 or 2
orders of magnitude.
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