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Laburpena
Azkenaldian, Text-to-Speech eredu anitz sortu dira sare neuronal sakonak erabiliz,
testutik audioa sintetizatzeko. Lan honetan, state-of-the-art Text-to-Speech eredu
eleaniztun eta hiztun anitzeko eredua landu da euskaraz, gaztelaniaz, katalanez eta
galegoz. Ikerketa honetan datu-multzoak bildu, haien audio- eta testu-datuak aldez

aurretik prozesatu, eredua hizkuntzetan entrenatu da urrats desberdinetan eta emaitzak
puntu bakoitzean ebaluatu dira. Entrenatze-urratserako, ikaskuntza-transferentzia
teknika erabili da dagoeneko hiru hizkuntzatan trebatutako eredu batetik abiatuta:

ingelesa, portugesa eta frantsesa. Beraz, hemen sortutako azken ereduak zazpi hizkuntza
onartzen ditu guztira. Gainera, eredu hauek zero-shot ahots bihurketa ere egiten dute,
sarrerako audio fitxategi bat erreferentzia gisa erabiliz. Azkenik, Speech-to-Speech

Translation egiteko prototipo aplikazio bat sortu da hemen entrenatutako ereduak eta
komunitateko beste eredu batzuk elkartuz. Bide horretan, Deep Speech Speech-to-Text

eredu batzuk sortu dira euskararako eta galegorako.

Abstract
Lately, multiple Text-to-Speech models have emerged using Deep Neural networks to

synthesize audio from text. In this work, the state-of-the-art multilingual and
multi-speaker Text-to-Speech model has been trained in Basque, Spanish, Catalan, and
Galician. The research consisted of gathering the datasets, pre-processing their audio and

text data, training the model in the languages in different steps, and evaluating the
results at each point. For the training step, a transfer learning approach has been used
from a model already trained in three languages: English, Portuguese, and French.

Therefore, the final model created here supports a total of seven languages. Moreover,
these models also support zero-shot voice conversion, using an input audio file as a
reference. Finally, a prototype application has been created to do Speech-to-Speech
Translation, putting together the models trained here and other models from the
community. Along the way, some Deep Speech Speech-to-Text models have been

generated for Basque and Galician.
Keywords: multilingual multi-speaker Text-To-Speech, Speech-to-Text, Machine
Translation, Speech-to-Speech Translation, cross-lingual zero-shot voice conversion,

Basque, Spanish.
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1 Introduction

Speech-to-Speech Translation systems (S2ST) are used to translate speech from a specific
language to another different language (Arora et al., 2013). The main goal of these systems
is to help people who do not speak a common language to communicate or find it easier to
express themselves in another language. Another possible purpose is to reduce the amount
of data to be transmitted, for example, when the distance is long or the communication is
very unstable.

Traditionally, these systems use an architecture that concatenates different modules in
a cascade manner (Lavie et al., 1997; Lazzari, 2006). Specifically, it consists of splitting
the task into three simpler sub-tasks: speech recognition, text translation, and then its
synthesis to produce speech again. In this research, a first prototype of a Speech-to-Speech
system is designed using this traditional approach. The design of a modularized structure
comes with the added advantage that, in addition to voice translation, the modules can
also be used separately for other future tasks. For example, in the case that concerns us,
as will be shown below, the developed transcription system will also be used to evaluate
the synthesis model and decide the best path to improve it.

Additionally, and in our case, the models can also conserve the speaker’s voice from the
input to the output waveform by using a voice identifier vector extracted from the audio.
In Figure 1, there is a simplified diagram of a Speech-to-Speech Translation model with
architecture in cascade. In the next subsections, each of the modules will be introduced.

Figure 1: Speech-to-Speech Translation model diagram with voice conversion support.

The following is a brief description of each of the models that is part of the modular
architecture of a Speech-to-Speech solution.

1.1 Text-to-Speech (TTS) Models

The study of Text-to-Speech systems (TTS), also known as speech synthesizers, is a vitally
important field of speech processing and a fundamental piece of human-computer inter-
action (Paul, 2014). The main goal of a Text-to-Speech system is to produce human-like
speech and mimic real-human speakers starting from a text-formatted input. In other
words, it makes computer systems able to read and pronounce texts like humans. The ba-
sic task of these systems is to produce sound waves that human listeners easily understand.
In Figure 2, there is an example of a waveform generated by synthesizing a sentence.
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Figure 2: Generated waveform example by synthesizing a sentence.

Today, there are already multiple approaches and working solutions for the task. These
systems are beginning to aspire to higher objectives, such as producing indistinguishable
sounds from real humans, adding prosodic features, or imitating specific speaker voices.
When a TTS system supports multiple languages, it is known as a multi-language TTS
model. If it supports the synthesis using different speakers, it is called a multi-speaker
model. Additionally, some may be able to produce speech from a speaker not known in
advance by the model: this is called a zero-shot multi-speaker TTS model.

Speech synthesis has multiple uses, for example, applications that speak to people, like
conversation agents, navigation systems, or helping blind people to browse the internet
and play video games. Another different use is to help people speak, for example, sufferers
of neurological disorders or individuals who have undergone laryngectomies. In general,
helping humans who have lost the ability to speak for any reason but are fully capable of
typing text through some interface.

1.2 Speech-to-Text (STT) Models

Speech-to-Text systems (STT), also known as automatic speech recognition systems (ASR),
are another crucial part of the speech processing field and a tool to reduce the gap between
human and computer communication methods. Its goal is to transcribe human speech from
an input waveform (Rista and Kadriu, 2020). This process can also be understood as the
speech synthesis process in reverse: we are searching for a way to convert spoken speech
to a textual form. The difficulty of this task not only resides in the enormous diversity of
human voices that need to be understood but also in dealing with the environment, which
can be noisy and variable.

Speech recognition has a wide variety of applications, like human-computer interaction,
acting as a bridge for computers to understand what humans communicate. In this sense,
speech would be a much more straightforward and convenient interface than a keyboard, for
example, when hands are busy with another part of the task to accomplish. As with speech
synthesis, speech recognition is helpful in conversation agents and navigation systems or
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as a simple and fast way to send instructions to the application. Another possible utility
of these tools is a simple audio transcription for optimal information storage or faster
transmission. At the same time, it can be used to help people who have difficulties using
a keyboard, mouse, or any other computer interface, either because they have a disability
or because they have trouble adapting and communicating comfortably with these new
systems.

1.3 Machine Translation (MT) Models

Recent Machine Translation systems, also known as Neural Machine Translation systems
(NMT), are a crucial part of text communication in today’s globalized world (Yang et al.,
2020). Their main purpose is to translate text from one language to another without
human interaction. This can facilitate and enrich the digital communication of two people
who speak different languages.

Depending on the languages involved and the models available, the language translation
can be done directly, or it may require multiple steps. For example, to translate a text
from Basque to Spanish, one can use a Basque-to-Spanish translation model if such a model
exists. If that is not the case, a possible approach is to use two models, translating to an
intermediate widely available language in between, like English. In other words, translate
Basque to English first and then translate the English text to Spanish. Besides, Machine
Translation models with multi-language support for the source or the target language also
exist, allowing to have an input or output in different languages. Therefore, in language
translation, multi approaches are usually possible to translate a given text successfully.

1.4 Motivation and Scope of the Thesis

There is no doubt that Text-to-Speech, Speech-to-Text, Machine-Translation, and other
speech and natural language-related technologies are gaining increasing importance as our
social life extends into the digital realm, some becoming the key component for people
to communicate satisfactorily. Due to this, the demand for this type of technology is
skyrocketing, its use is spreading unstoppable around the world, and much research in this
regard is developing and flourishing. This has led to significant advances in recent years,
both from an academic and business point of view, from achieving multi-language support
to creating multi-speaker systems that preserve the voice or imitate human prosody.

As each one of the parts of a Speech-to-Speech system has a considerable complexity,
the main focus here will be to develop a system capable of synthesizing text following the
latest trends in state of the art. This Text-to-Speech system will support multiple speakers
and even zero-shot speaker synthesis. Until now, many of these researches focus on the
English language. Here we will focus on developing Text-to-Speech models that support
languages spoken in Spain, including but not limited to Basque and Spanish. Early versions
of the transcription (STT) and translation (MT) modules will also be developed, being the
result of initial research. Still, their more detailed development and improvement will
remain pending for future research.
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Typically, the training of these types of models requires massive audio datasets and
text corpora. For English, there are many resources available online and for free. But
for other languages, its availability is much more reduced, and often it requires a more
exhaustive manual review and clean-up. In this research, the process followed for obtaining
and pre-processing the data to be used will also be detailed. On top of that, during the
development of this research, at some points, it has been necessary to use computers with
high-end GPUs specifically designed for deep learning. When necessary, the hardware used
and the approximate time required to create the models will be detailed.

1.5 Research Questions

1. Which are the correct procedures to develop and evaluate a Text-to-Speech system
that supports multiple languages like Basque and Spanish?

2. Does adding languages to a state-of-the-art multilingual synthesis model decrease its
performance?

3. Can these synthesis models be successfully incorporated into a Speech-to-Speech
model?

1.6 Outline of the Master’s Thesis

This thesis describes as detailed as possible the research process carried out. Starting from
the study of the different initial investigation paths available, the decisions made, and
the process followed to develop and evaluate the models. On the journey, the difficulties
encountered are described, the strategies designed to overcome them are presented, and
some limitations will be explained.

The work is organized as follows:

1. Chapter 2 provides an overview of the state-of-the-art Text-to-Speech technologies,
focused mainly on the recent trends, including the models finally chosen. The needs
and reasons for reaching the election will be explained.

2. Chapter 3 explains the methodology used to train and evaluate the Text-to-Speech
models. This includes the analysis and pre-processing of the datasets.

3. Chapter 4 will show the results obtained when evaluating the models, making a
thorough comparison between the different models trained and other state-of-the-art
models.

4. Chapter 5 will present a complete Application that uses our Text-to-Speech models
to do Speech-to-Speech Translation with voice conversion. In this chapter, the MT
and STT models used will be introduced, including a section about how to train two
of the STT models.
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5. Chapter 6 will complete the research giving a summary of what has been achieved,
with the conclusions reached and future research steps.
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2 Literature Review

For the reader to acquire the required background knowledge to understand how the mod-
els used here work and the scope of our contribution, some of the traditional technologies
involved in developing speech synthesis will be explained first. Afterward, an overall intro-
duction to the latest models will be provided, explaining their strengths and weaknesses.
The selected models for the work carried out here will be justified along the way. In order
for the reader to understand this section properly, even though not strictly required, some
previous experience with speech technologies and neural networks is recommended.

2.1 History

The interest in building devices in the shape of a human head capable of speaking dates
back to the year 1003, with Gerbert of Aurillac (Pope Sylvester II) (R. M. Thomson, 1999).
The stories tell that back then, they had already built a head capable of answering yes
or no to any question. From there on, multiple stories were written around mysterious
machines capable of speaking and with immense wisdom (LaGrandeur, 1999). Leaving
aside the reliability of these stories, the interest of human beings in having entities or
machines capable of speaking is indisputable. Without going that far in time, one of
the first machines capable of synthesizing voice, of which there is real evidence, dates
back to 1779, when Christian Gottlieb Kratzenstein built a tract-shaped device that could
pronounce five vowels (Sami Lemmetty, 1999). Shortly after, Wolfgang von Kempelen
described a design with mechanical equivalents of many parts of human vocal apparatus
like the lungs, the glottis, mouth-shaped cavities, and machinery to control the movement of
the lips, nostrils, and tongue-palate (Kempelen, 1791). A machine with this design should
be elaborate enough and manage to pronounce some easy words and short sentences in an
understandable way (Dudley and Tarnóczy, 1949). Based on this design, multiple speaking
machines were built during the 19th and 20th centuries (Mattingly, 1974).

Regarding the use of computers for speech synthesis, the first attempts came around
1938, when Homer Dudley (Paul, 2014) developed the vocoder at Bell Labs. This hard-
ware created tried to mimic speech based on a parametric method to produce tones and
resonances. In the early days, including the twentieth century and the early years of this
last century, the main speech synthesis techniques were articulatory, formant, and concate-
native. More recently, statistical techniques gained more attention, in which the machines
already consisted of training methods. All this until recent times, when neural networks
have made their way in multiple fields, especially after the progress caused by attention
and transformers in 2017 (Tan et al., 2021). In Image 31, we can see a summary of the most
prominent techniques throughout each decade. The first model types were more parametric
and knowledge-driven, requiring fewer data. The next models, being more concatenative,
tend to require more data. The latest models, having a neuronal approach, are a mix-
ture of both previous methods, being also parametric, but those parametrizations depend

1Updated version of the image obtained from Speech Technologies course at University of the Basque
Country UPV/EHU.
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Figure 3: Computation-based approaches to speech synthesis throughout history.

on heavy data instead of human experts. Now, each of these computer-based synthesis
methods will be briefly explained.

2.1.1 Articulatory Synthesis

Articulatory Synthesis methods were the first to appear and consisted of simulating vocal
system parts like the vocal tract, lungs, tongue, and lips. This simple method of learning by
imitation sounds simple at first, but in practice, with these techniques is incredibly difficult
to imitate the sound of humans with precision. This is mainly due to the complexity
of the human body and the wide variety of movements and articulations involved during
speech. Among other reasons, being able to collect detailed information about the external
and internal movements of our speech system becomes a daunting task. Consequently,
articulatory approaches never quite worked well (Coker, 1976; Shadle and Damper, 2001).

2.1.2 Formant Synthesis

Formant Synthesis methods came next to address the problems of articulatory models.
These model parameters are a set of rules to imitate the speech formants using digital filters.
Usually, three to five formants are considered, depending on the required quality. This
method allows the creation of an infinite number of sounds, where the quality of speech can
be specified. Other configurable parameters are voicing fundamental frequency, excitation
open quotient, voicing in excitation, and noise. However, the rules are challenging to
define, and deep linguistic knowledge is usually required. In other words, these rules are
parameters that need to be determined to produce the desired utterance and are difficult
to create. Indeed, this system can create very intelligible speech using low computing
resources and does not need a large dataset. Embedded systems like toys, arcade games,
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and some synthesis-integrated chips in the eighties commonly used them. Nevertheless,
the speech produced by these methods lacks naturalness, sounds very robotic, and does
not resemble the human voice, often including many artifacts (Seeviour et al., 1976; Allen
et al., 1979; Klatt, 1980, 1987).

2.1.3 Concatenative Synthesis

The Concatenative Synthesis technique is just a concatenation of previously recorded sen-
tences, words, or syllables. As expected, it requires a huge dataset to store all the recordings
that can cover a wide range of possible language sentences. Additionally, a unit selection
algorithm is used to search for the most appropriate recorded speech unit for each intro-
duced text. As the produced speech uses pre-recorded speech pieces directly, the final
results are very intelligible. They can also sound more human-like but are limited to the
recorded speaker and speech units. Naturalness is very dependent on the unit selection
algorithm and the available recordings. If the dataset is very exhaustive and the algorithm
chooses the best pieces, longer recording units will be used, and the result may sound
highly natural. But when sorted units are concatenated, that naturalness can be lost in
the blink of an eye. Additionally, sometimes the concatenation can produce changes in
tone, prosody, or the transmitted emotion, resulting in even less natural results (Olive,
1977; Moulines and Charpentier, 1990; Sagisaka et al., 1992; Hunt and Black, 1996; Black
et al., 2001).

2.1.4 Statistical Parametric Speech Synthesis

Figure 4: Statistical Parametric Synthesis speech synthesis process.

The next research field in speech synthesis was Statistical Parametric Speech Synthesis
(SPSS). These models generate acoustic parameters, which are then used to generate the
speech waveform. In these systems, the frequency spectrum (vocal tract), fundamental
frequency (voicing), and duration (rhythm) can be modeled at the same time. The ar-
chitecture of these systems is usually composed of three components: the text analysis
module, the parameter prediction module, and the vocoder module. During synthesis, the
text analysis module extracts the linguistic features, for example normalizing the text,
extracting the phonemes, or a similar input linguistic transformation. These linguistic fea-
tures are the input to the acoustic model. This acoustic model is often a Hidden Markov
model and extracts acoustic features like fundamental frequency and spectrum simultane-
ously (Yoshimura et al., 1999; Yoshimura, 2002). Finally, the acoustic features go through
a vocoder that converts them to a speech waveform. This speech synthesis process can be
seen in Figure 4. For training SPSS systems, a dataset with paired linguistic features and
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acoustic features is required that will be used to train the acoustic model. The strength
of these statistical systems is the naturalness of the audio and the flexibility compared to
previous systems. In addition, the dataset does not need to be as big as for concatenative
systems. However, as for the quality, albeit the speech produced tends to be intelligible,
it often has many artifacts and sounds robotic. For that reason, it has a certain lack of
naturalness, and the vocoder limits its quality to some extent. To overcome some of these
limitations, the first neural network-based speech synthesis solutions replaced the HMM
with a deep neural network (DNN) (Zen et al., 2013) or a recurrent neural network (RNN)
(Fan et al., 2014). However, they still predicted acoustic features from linguistic features,
maintaining a separate text analysis and vocoder module.

2.1.5 Neural Models

The latest trends in speech synthesis are Neural Speech Synthesis models. These sys-
tems continue the SPSS modular approach but replace each of the parts with their neural
counterparts or sometimes even integrate them in a unified system, what is known as the
End-to-End Neural Speech Synthesis model. The neural models use Deep Neural Networks
(Gegout et al., 1995) based on an old multilayer perceptron architecture (Haykin, 1994).
The perceptron is a computer-based neuron that, although it does not look like the neurons
of the human brain, it was inspired by them and has the capacity to learn. A single per-
ceptron is a function to map an input to a desired output using an approximate function.
The weights are updated to get the actual output to match the desired output as they
pass through the different examples from the dataset. This weight adjustment process is
what is called training or the learning process of the neural network. Equation 1, is the
expression used to calculate the output from the input. The o refers to the output, xk to
the input of the k artificial neuron, and Wk to its learnable weights. The first step is to
get the weighted sum of the inputs, which goes through the function σ(·), known as the
step function. This last function is usually a nonlinear activation function responsible for
breaking the proportionality between the input and output.

Nonlinear problems are frequent in engineering, physics, biology, and other fields be-
cause most systems in nature are nonlinear. According to the Universal approximation
theorem (Hornik et al., 1989; Csaji, 2001), putting together multiple nonlinear perceptrons,
formed each by the weighted sum and the activation function, will allow us to approxi-
mate arbitrarily complex functions. The σ(·) function in the equation is also known as the
Sigmoid activation function, and it is the most frequently used one, but others like Tanh,
ReLU, or LeakReLU are also becoming common, especially for bigger networks Gustineli
(2022). In Figure 5, we can see the general schema of a traditional perceptron.

o = σ

(
n∑

k=0

xk ·Wk

)
forx0 = 1 (1)

The Feed-Forward Neural Networks (FFN) or Multilayer Perceptron (MLP) used
by deep learning models are based on stacking multiple layers of perceptrons together.
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Figure 5: Single perceptron architecture.

Each layer in the middle has its own weights and might also have its own activation
functions. These layers’ architecture is composed of the input layer, an output layer, and
hidden layers in-between with the perceptrons. To train these possibly big or huge neural
networks efficiently, adjusting all the weights as it goes through all the examples in the
dataset, multiple algorithms are available, being backpropagation (Rumelhart et al., 1986)
with Stochastic Gradient Descent (SGD) (Robbins, 1951) the most common. The final
architectures may vary in size and structure, but the most basic feed-forward network can
be seen in Figure 6.

Figure 6: Feed-Forward Neural Network architecture, with multiple layers of perceptrons.

A variant of neural networks widely used in natural language processing and speech-
related tasks are Recurrent Neural Networks (RNN) (Sherstinsky, 2020). The main
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idea of these networks is to use the previous output as input for the next step and are
used to process sequential data: this type of model is also known as autoregressive. The
weights of the different steps are shared across time in a hidden state. This allows part
of the information from the past to propagate to the future, being appropriate to con-
serve some previous knowledge. Another use of these networks is for time-series data,
like predicting future status based on previous data. There exist different possible im-
plementations depending on how much or how we want previous information and merge
it with the new input, the most common ones being Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRU) (Cho et al., 2014)
networks. Depending on the task at hand, the recurrent neural networks can support differ-
ent input-output configurations like one-to-many (i.e., text generation), many-to-one (text
classification), and many-to-many (ı.e., machine translation or speech synthesis). In Figure
7, there is a general diagram of a recurrent neural network in a many-to-many setup. The
flexibility of these networks allows the creation of sequence-to-sequence (seq2seq) models
with encoder-decoder modules (Sutskever et al., 2014), where there is a first RNN that en-
codes the input into a compressed internal representation, and then a decoder sub-model,
that can be another RNN that can convert that internal representation into the desired
output. In this internal representation, an attention sub-module can be attached to help
the model learn the importance of past and-or future values (Liu and Lane, 2016). The
main weak point of these networks is that they cannot run in parallel due to their struc-
ture, so they have some efficiency problems; for example, the inference time grows linearly
with the output length. Additionally, their ability to retain older information is not so
good. With respect to Speech Synthesis, the Tacotron model series (Wang et al., 2017;
Shen et al., 2017) is the most known model to incorporate recurrent neural networks.

Figure 7: Recurrent Neural Network (RNN) architecture, in many-to-many kind of task.

Other widely used neural networks are Convolutional Neural Networks (CNN)
(O’Shea and Nash, 2015), initially more focused on image-related tasks. The most impor-
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tant parts of these networks are convolution layers and pooling layers. The convolutional
layer scans the input with a square sliding window and applies learned filters with weights
as it traverses the image. Usually, the activation function used by these layers is ReLU
instead of Sigmoid. The output of these layers is different feature maps, each enhancing
a different characteristic of the image, like colors, edges, specific shapes, and so on. Typ-
ically, after each convolutional layer, there is a pooling layer that is just a downsampling
operation on each feature map. Pooling operations are fast and simple, like getting the
maximum or average value of a sliding window, and they reduce the dimensionality pre-
serving the spatial invariance of the input image. In Figure 8, we can see a convolutional
neural network with a single convolutional layer followed by a pooling layer. Frequently
the models contain multiple convolutional and pooling layers in a row, sometimes inter-
calating another kind of neural network in between. The first layers tend to be good at
recognizing small patterns of the images. As we go into the deeper convolutional layers, the
neural network may gain the ability to recognize more complex shapes and more general
aspects of the image, like objects or faces, depending on the task it has been trained on.
Contrary to RRNs, CNNs can be processed in parallel to train these models faster. As
more elaborate models have appeared, mixing several of these approaches, convolutional
networks have made their way into tasks that are not only related to images. It is worth
mentioning the case of 1D convolutions, where the window only slides along one dimension.
This is appropriate for time-series data, where a sliding window can help extract features
and maintain spatial information.

Figure 8: A Convolutional Neural Network (CNN) with a convolution and a pooling oper-
ation, with a feed-forward neural network at the end for the downstream task.

Nowadays, CNNs have been incorporated into the toolset to extract important features
from diverse types of input. In the Speech Synthesis field, DeepVoice (Arik et al., 2017)
uses a statistical model with convolutional neural networks, its latest version, Deep Voice
3 (Ping et al., 2017), becoming completely convolutional.

In 2017, a group of researchers was about to change the future of deep learning forever,
releasing an article called ”Attention Is All You Need,” in which they presented a new
model that they named Transformer (Vaswani et al., 2017). The task of the model was
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Figure 9: The transformer model architecture from the original paper (Vaswani et al.,
2017).
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translating text between languages, so both input and output are text. As for the architec-
ture, it has an encoder-decoder structure, but instead of RNNs, the encoder and decoder
modules were a list of layers composed of feed-forward networks, batch normalization, and
self-attention modules. The general architecture of the transformer can be seen in Figure
9. One of the significant changes that the transformer brought about was being able to
train in parallel, solving the previous problem with neural networks and scaling it in size
without suffering from overfitting. In the speech field, Transformer TTS was one of the
first models to incorporate transformers for synthesis (Li et al., 2018). Today its use is
much more widespread.

With respect to the transformer’s internal architecture, the batch normalization layers
of the transformer (Add & Norm) just re-center and re-scale the data using the mean and
variance to help the models train faster and more stable. The softmax function converts
the output to a probability distribution of all the possible output values (Bridle, 1989).
The self-attention modules learn the importance of different parts of the output generated
by the previous networks, considering different criteria.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2)

The multi-head attention layer keeps attention to multiple parts of the sequence in
different ways. It has eight attention heads running in parallel, each having three inputs
called query (Q), keys (K ), and values (V ), as can be seen in Equation 2. The queries
are the representation of the current word used to score against all the other words. We
only care about the query of the token we are currently processing. Keys are like labels for
all the words in the segment we are processing; in other words, what we match against in
the search for relevant words. Values are the representations of the actual word; once we
have scored how relevant each word is, these are the values we add to represent the current
word internally in the model.

In Figure 10, we can see a diagram of the inner workings of one attention head. For a
deeper understanding of this process, the reader may refer to ”The Illustrated Transformer”
article by Jay Alammar (Alammar, 2018).

So far, we have already seen the main pillars used to build the most recent neural
models. The following section will mention specific speech models that are giving the best
results today.

2.2 Recent Trends

The number of models for speech synthesis has had a huge increase in the last decade,
even more so since the publication of the transformers and the greater availability of big
datasets. Some of the models still use an external vocoder; others include the vocoder inside
their architecture. The text analysis module is also greatly simplified, usually reduced to a
simple text normalization or grapheme-to-phoneme conversion. In brief, the general trend
is the creation of End-to-End models that do the synthesis task directly and depend less
and less on external modules or previous steps to work.
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Figure 10: Transformer attention heads diagram from the original paper (Vaswani et al.,
2017).

Before delving into specific models, a new trend in deep learning models should be
introduced: Generative Modeling (Ng and Jordan, 2001). Many traditional machine learn-
ing models are discriminative in nature, where they try to model the output of the model
knowing the input (p(y|x)). However, generative models try to model the joint probability
of the input and the output instead (p(x, y)). In other words, they try to learn the prob-
ability distribution of the dataset, and we will be able to generate outputs stochastically
just by sampling from the model. For example, in the image domain, generative models
are able to create new pictures that do not exist in the original dataset, but they look like
they come from it. This implies that these kinds of models are probabilistic instead of
deterministic, and they will generate a different output each time during inference.

In Figure 11, the most known recent trends in generative modeling are listed with a
simplified diagram of their architecture. Different generative techniques exist mainly to
add complexity to the data and are commonly used for the one-to-many types of problems,
like in text-to-speech conversion, in which, for simple text input, there may exist multiple
valid speech waveforms that have more complexity.

Variable Autoencoders (VAEs) (Kingma and Welling, 2013) (Figure 11a) are gen-
erative models where the input is compressed into a lower dimensional space, generating a
smaller vector that tries to conserve as much information as possible from the input (x),
but in a smaller latent space. Then, from that generated z latent variable, the original
input can be reconstructed (x̂). The Encoder part usually includes convolutions or similar
operations to reduce the input vector. The decoder is composed of convolutional trans-
posed layers to increase the size of the latent variable back to the original. After training
the model, by sampling variables from the latent space created, the model will gain the
ability to generate new outputs that resemble the examples in the dataset but did not exist
previously.

Another new generative approach is Generative adversarial networks (GANs)
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(a) Variational autoencoder (VAE) (b) Generative adversarial network (GAN)

(c) Flow-based models (d) Diffusion models

Figure 11: Recent trends in generative neural models. Diagrams inspired by various Lilian
Weng’s articles (Weng, 2018a, 2017, 2018b, 2021).

(Goodfellow et al., 2014) (Figure 11b), which are not so focused on estimating the density
of the distribution but more on sampling to generate new output. The sampling can be
done from some simple noisy input, and the model will learn a transformation to the
learning distribution. The GAN is composed of two networks that will compete with each
other. There is a Discriminator network that will learn how to differentiate real examples
on the dataset from generated examples. There is also a Generator network that turns the
input noise into outputs that mimic training dataset examples and will try to trick the
Discriminator. With this architecture, the discriminator network will teach the generator
network how to create examples that are apparently real, and the Generator will teach the
Discriminator how to classify the generated non-real examples correctly. Often these kinds
of models are trained interleaved, first the discriminator for some steps, then the generator,
later the discriminator again, and so on, but varied approaches exist. After training the
GAN, the generator network can be used to generate new examples similar to the ones in
the original dataset.

Flow-based models (Rezende and Mohamed, 2015) shown in Figure 11c learn the
probability density function using a sequence of invertible transformations. The different
transformations are closed under composition and are called one after the other. In this
way, the model will be able to learn to generate complex flows from simpler ones. In the
end, the model will learn a useful latent representation that has immediate mapping with
the input. These models are efficient to sample and evaluate, giving highly expressive
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and flexible output, and also straightforward to train. For example, during training, these
models can learn to create Gaussian noise from the output examples; during inference, the
model will know how to generate examples just by sampling from Gaussian noise. The
primary condition for the process to work is that the mapping process needs to be formed
by diffeomorphism functions: in layman’s terms, all the functions need to be both invertible
and differentiable.

Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al., 2020) diagram can be seen in
Figure 11d. Diffusion Probabilistic Model (DPM) models create a Markov chain of steps
to keep adding noise to the data while performing the reverse diffusion process. Diffuse
model training consists of slowly incorporating random noise into the original data step
by step, and the model learns to reverse the process little by little (Weng, 2021). In the
early stages of training, the model will learn to remove a tiny amount of noise from the
data. In later stages, the model will be able to create data samples from pure noise that
closely resemble the original dataset examples. These kinds of models can be trained using
a framework called stochastic calculus (Song et al., 2020).

Leaving the different approaches aside, and with respect to specific recent models, in
Table 1, we can see the best-performing TTS models at the end of 2022. The training
of these models was made by the NaturalSpeech (Tan et al., 2022) project researchers,
retraining all the models using the same dataset and splits. Here we are going to give an
overview of those best-scoring speech synthesis systems, introducing some concepts along
the way.

Model Type MOS CMOS Time
FastSpeech 2 Self-Attention 4.32 ± 0.15 -0.33 2020
Glow-TTS + HiFiGAN Flow 4.34 ± 0.13 -0.26 2020
Grad-TTS + HiFiGAN Diffusion 4.37 ± 0.13 -0.24 2021
VITS Non-autoregressive 4.43 ± 0.13 -0.20 2021
NaturalSpeech Self-Attention 4.56 ± 0.13 0.00 2022

Table 1: Test results of the latest TTS systems on the LJSpeech dataset.

2.2.1 WaveNet

Before explaining the presented state-of-the-art models, let us see an overview of a WaveNet
model. WaveNet was presented in 2016 by the Google DeepMind team as an autoregressive
model using convolutional neural networks to generate raw audio waveforms directly (Oord
et al., 2016a). It was proposed more as a polyvalent framework. and it stood out among
other proposals in that it can be very versatile: it can be applied to Text-to-Speech tasks,
as a vocoder, or even as a discriminative model for phoneme recognition and similar tasks.
The brought innovations were its naturalness when evaluated subjectively, ability to handle
long-time dependencies, being able to condition different aspects like specific speakers, and
support of different kinds of waveform outputs not only limited to human speech. In
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this model, dilated causal convolutions are used to achieve long-time dependency support,
and they are composed of a stack of convolutional layers. These layers cannot depend on
the future but can depend on the long-time past by using convolutions with holes. Those
convolutions skip certain input steps to increase the perceptive temporal field of the model.

Figure 12: WaveNet model architecture from the original paper (Oord et al., 2016a).

In Figure 12, the general diagram of the residual blocks that form the WaveNet can be
appreciated. Residual block means that the layer can be skipped, by merging the output
of the module with the input, to have a view of short-term and long-term at the same
time. After each dilated convolution, the use of gated activation units can be seen as in
PixelCNN (Oord et al., 2016b). In Equation 3, the operations performed by this activation
function are presented, where ⊙ means element-wise multiplication, ∗ denotes convolution,
f refers to filter, g to gate, and W are convolution filters to be learned during training.

z = tanh(Wf,k ∗ x)⊙ σ(Wg,k ∗ x) (3)

2.2.2 FastSpeech 2

FastSpeech 2 (Ren et al., 2020) is a text-to-speech synthesis model developed by researchers
at Microsoft. FastSpeech models are non-autoregressive in the sense that they replaced the
traditional RNNs with FFNs. This allows them to overcome some of the known limitations
of RNN models, mainly their slowness due to the difficulties of training them in parallel
and efficient use of GPUs; also, their lack of robustness results in frequent word skipping,
mispronunciation, and repetitions (Chen et al., 2020b; Peng et al., 2019). At the same time,
FastSpeech models are able to achieve similar voice quality to traditional autoregressive
models. On the contrary, unlike autoregressive models, they cannot have infinite memory,
so they usually need to be bigger to process longer inputs. FastSpeech 2 is an improved
version of the original FastSpeech 1 (Ren et al., 2019) model that generates high-quality
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speech at a faster rate. For that, it adds a variance adapter module to their previous
version and directly trains the model with ground truth examples.

Figure 13: FastSpeech 2 model architecture from the original paper (Vaswani et al., 2017).

Therefore, FastSpeech 2 proposes to use a non-autoregressive approach to tackle the
one-to-many problem of generating audio from text or phones. This is because, in the
TTS task, the input lacks much information, like pitch, energy, volume, or prosody, that
need to be generated by the model in order for the output to sound natural. For that, a
variance adaptor is added that will learn to predict speech, energy, and phoneme duration
during training and add this information to the input during inference. Phoneme duration
information is important to determine the length of generated speech sounds: they use
Montreal forced alignment (MFA) (McAuliffe et al., 2017) to extract the phoneme duration
for training. Pitch is essential to express emotions and affects the prosody: they use
Continuous Wavelet Transform (CWT) to extract the pitch spectrogram (Suni et al., 2013;
Grossmann and Morlet, 1984) using it as the target. Similarly, energy is an essential
feature for prosody and also affects volume: they use the amplitude of each Short-Time
Fourier Transform (STFT) frame as the target. Hence, they propose using three predictor
modules, each of which comprises a 1D convolutional network with ReLU activation, a
normalization layer, and a dropout layer. The normalization re-centers and re-scales the
data; the dropout omits some random neurons during training to avoid overfitting, and
1D convolution extracts spatial properties of speech time-series data. In Figure 13, we can
see the model architecture. The encoder and Mel-spectrogram decoder layer are models
based on the transformer architecture used in FastSpeech 1. In Figure 14, we can see
the internals of the FastSpeech 2 encoder and decoder modules, similar to the original
transformer blocks, replacing the FFN with a 1D convolution.
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Figure 14: FastSpeech 1 FFT Block architecture from the original paper (Vaswani et al.,
2017).

2.2.3 Glow-TTS

Glow-TTS (Kim et al., 2020) is a generative flow-based TTS model that is faster than
autoregressive models but maintains good quality and gains in flexibility (Weng, 2018b).
Flow-based models try to learn the probability density function of the data. For that, they
use a statistics tool called normalizing flows (Rezende and Mohamed, 2015) that estimates
the probability density function using a sequence of invertible transformations. This pro-
cess makes it easy to calculate the loss and do the back-propagation making the estimation
of probability density functions tractable. Compared with previous TTS models, Glow-
TTS does not require an external aligner, so the training procedure is simplified. The
model finds the alignments between text and speech using flows and dynamic program-
ming, searching for the most probable monotonic alignment, also known as Monotonic
Alignment Search (MAS). Duration predictor ensures monotonicity and surjectiveness; in
other words, the characters are pronounced in the correct order, and no text is skipped or
repeated. Using monotonic alignments also behaves better on long sentences and generally
gets a more robust TTS. Using generative flows achieves a fast, diverse, and controllable
synthesis. This control is performed by altering the intermediate latent representation and
allows for tweaking intonation patterns and pitch. Additionally, the model is designed to
be easily extended to a multi-speaker setup.

In Figure 15, we can see the general architecture and get an idea of how the training
and inference procedures are performed on the Glow-TTS model. The Encoder module
at the bottom of the figure is based on Transformer TTS (Li et al., 2018) encoder, a
speech-oriented modification on the original Transformer encoder architecture (Vaswani
et al., 2017). From the Transformer TTS, the positional encoding is replaced by a rela-
tive position representation. They also added a residual connection to the encoder before
the neural network. Then a linear projection layer is added to estimate statistics of the

Language Analysis and Processing



Basque and Spanish Multilingual TTS Model 22/90

Figure 15: Training and inference processes of Glow-TTS from the original paper (Kim
et al., 2020).

prior distribution, referred to as Project in the diagram. With respect to the Duration
Predictor, it is the same as in FastSpeech 1 (Ren et al., 2019) and FastSpeech 2 (Ren
et al., 2020) (Section 2.2.2), with two convolutional layers using ReLU activation, a nor-
malization layer, and dropout. The decoder module is a family of flows to do the forward
and inverse transformation in parallel. It is a stack of multiple blocks with an activation
normalization layer, a 1D convolution, and an affine decoupling layer based on WaveGlow
model architecture (Prenger et al., 2018).

2.2.4 Grad-TTS

Grad-TTS (Popov et al., 2021) is a Diffusion Probabilistic Model (DPM) (Sohl-Dickstein
et al., 2015) for speech synthesis. In short, Grad-TTS is a synthesizer using the monotonic
alignment search (MAS) from Glow-TTS to align the encoder output; this is combined
with a decoder that transforms Gaussian noise parametrized by previously aligned output
into a mel-spectogram. A peculiarity of this model is that the user can control the balance
between audio quality and inference speed. It is also possible to use this model in an
End-to-End fashion, removing the vocoder by making it output a waveform.

In Figure 16, we can see the inference process and the model’s internal architecture.
The input to the model can be phonemes or characters, and the output will be mel-
spectrograms, so a vocoder is needed to obtain the final waveforms. Internally, the Grad-
TTS model contains three modules: encoder, duration predictor, and decoder. The encoder
and duration predictor structure is the same as in the previously seen Glow-TTS model.
The decoder is a Probabilistic Diffusion Model with a small version of U-Net architecture
(Ronneberger et al., 2015; Ho et al., 2020) so as not to increase the size of the model too
much. Besides, the model allows a variable number of steps of the decoder at inference to
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Figure 16: Inference processes of Grad-TTS from the original paper (Popov et al., 2021).

search for a better balance between speech quality and speed, being able to do real-time
synthesis comparable to the quality level of other commonly used TTS.

2.2.5 VITS

Variational Inference with adversarial learning for end-to-end Text-to-Speech (VITS) (Kim
et al., 2021) is a parallel end-to-end model that integrates the acoustic model and the
vocoder in the same pipeline, generating a waveform from text or phonemes. Their pa-
per introduces a new stochastic duration predictor module to add diverse rhythms to the
speech, thus tackling the one-to-many problem. Additionally, it combines various recent
techniques like normalizing flows, adversarial training, and a variable autoencoder. Nor-
malizing flows improve expressiveness and generate high-quality waveforms. Adversarial
training is used for waveform generation. Variable autoencoders are mainly to connect the
acoustic and vocoder modules of the TTS. Let us dive into the details of this model for a
moment to try to understand it.

In Figure 17, we can see the differences between the training and inference processes
of the model. At the same time, we can get an overview of all the modules that compose
it. When training the model, we have linear spectrograms and phonemes as input and the
final waveform as output. During this process, the z latent variables will learn to have the
required information from the aligned text and the spectrogram, facilitating the connection
between the acoustic model and the vocoder. Even though not included in the schema and
not studied in detail, they also demonstrate the expressive characteristics of the model by
proposing a way to add a speaker embedding to multiple parts of the model.

From the diagram, the Posterior Encoder is the same as the encoder from GlowTTS:
a WaveNet residual block with convolutional layers, a gated activation unit, and skip
connection (Oord et al., 2016a). The Prior Encoder is formed by a Text Encoder to
process the input phonemes and a Flow to add complexity to the prior distribution. The
text encoder is a transformer encoder block using absolute positioning (Vaswani et al.,
2017). The Flow is a normalizing flow layer to add flexibility, and it is a stack of volume-
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Figure 17: Training and inference processes of VITS from the original paper (Kim et al.,
2021).

preserving affine coupling layers (Dinh et al., 2016) with a stack of WaveNet residual blocks.
The Decoder is a HiFi-GAN V1 (Kong et al., 2020) vocoder. The vocoder has a Generative
Adversarial Network (GAN) architecture (Goodfellow et al., 2014), this means that it has
a Generator learning to create waveforms and a Discriminator learning to detect those fake
waveforms; both models will compete with each other, ending up with a Generator able
to output natural human-like speech. The Stochastic Duration Predictor is responsible for
learning phoneme duration. It is a stack of residual blocks with convolutional layers. They
apply neural spline flows with invertible nonlinear transformation (Durkan et al., 2019) to
improve expressiveness similar to the affine coupling layers of the Flow module.

In order to successfully train all these blocks, the VITs model uses several losses to-
gether. In Equation 4, the combination of the VAE and GAN training final loss is presented.

Lvae = Lrecon + Lkl + Ldur + Ladv (G) + Lfm (G) (4)

The mel-spectrogram Reconstruction Loss is the maximum likelihood estimation as-
suming a Laplace distribution between the mel-spectrograms. The real mel-spectrogram is
compared with the mel-spectrogram of a wave generated by the vocoder when upsampling
the latent variable z. The mel-spectrograms are calculated with the Short-time Fourier
Transform (STFT) and a linear projection into the mel-scale. Then the L1 loss between
both spectrograms is calculated. The final formulation is in Equation 5.

Lrecon = ∥xmel − x̂mel∥1 (5)

The Kullback–Leibler (KL) divergence loss in Equation 6 compares how much entropy
there is between the input linear spectrogram (xlin) and input character phonemes (ctext)
with the estimated alignment (A), after applying the normalizing flow (pθ). The KL
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divergence measures the statistical distance or how different both distributions are. Using
the linear-scale spectrogram of the ground truth speech instead of the mel-spectrogram
helps provide higher-resolution information to the posterior encoder.

Lkl = log qϕ (z | xlin)− log pθ (z | ctext, A) ,
z ∼ qϕ (z | xlin) = N (z;µϕ(xlin ), σϕ(xlin )) ,

pθ = N (fθ(z);µθ(c), σ(c))

∣∣∣∣det ∂fθ(z)∂z

∣∣∣∣ ,
c = [ctext, A],

(6)

The alignment (A) is estimated with the monotonic alignment search (MAS) like in
Glow-TTS (Kim et al., 2020), which maximizes the likelihood of data parametrized by a
normalized flow (f), as in Equation 7.

A = argmax
Â

log p(x | ctext, Â) (7)

The Duration Loss (Ldur) is the negative variational lower bound (VLB) of the phoneme
duration shown in Equation 8. The stochastic duration predictor is a flow-based genera-
tive model trained with maximum likelihood estimation. To solve the problem, they add
a random variable (u) for variational dequantization (Ho et al., 2019) and another ran-
dom variable (v) to apply variational data augmentation (Chen et al., 2020a), both of
them having the exact same time resolution and dimension as the duration sequence (d).
The phoneme duration is sampled from random noise using inverse transformation of the
duration predictor.

Ldur = −Eqθ(u,v|d,ctext)

[
log

pθ(d− u, v | ctext)
qθ(u, v | d, ctext)

]
(8)

For the adversarial training of the HiFi-GAN vocoder, a discriminator needs to learn
to differentiate between generated examples and real ground truth examples. The GAN
is trained jointly in a minimax game, where the discriminator wants to maximize the
difference between the real data classification (D(x)) and fake data (D(G(z))). For that,
traditional binary cross-entropy loss of the original GAN (Goodfellow et al., 2014) and
Least-Squares loss functions from LS-GAN models (Mao et al., 2016) are used to avoid the
vanishing gradient flow. The discriminator tries to classify real examples as 1 (D(x)) and
generated examples (D(G(z))) close to 0, maximizing their difference. The least squares
GAN Discriminator Loss can be seen in Equation 9. Conversely, the generator loss wants
to minimize the difference between real and fake data. For that, it wants to make the
generated data (D(G(z))) close to 1, as the real data. The least squares GAN Generation
Loss can be seen in Equation 10.

Ladv(D) = E(y,z)

[
(D(y)− 1)2 + (D(G(z)))2

]
(9)

Ladv(G) = Ez

[
(D(G(z))− 1)2

]
(10)
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Finally, Equation 11 defines the Feature Matching Loss of the Hifi-GAN. It calculates
the distance between a generated sample and a ground truth sample in every intermediate
feature. This measures the difference in features of the discriminator in each layer, and it
is known to help train the generator in speech synthesis models (Kumar et al., 2019). It
is like a reconstruction loss but measured in the hidden layers of the discriminator, and
it works as a replacement for the element-wise reconstruction loss used by VAE models
(Larsen et al., 2015).

Lfm(G) = E(y,z)

[
T∑
l=1

1

Nt

∥Dl(y)−Dl(G(z))∥1

]
(11)

2.2.6 YourTTS

YourTTS (Casanova et al., 2022b) model is a multi-speaker and multilingual version of the
VITS model. Both speaker and language are explicitly added information types through
embeddings. It gets state-of-the-art (SOTA) results in zero-shot multi-speaker speech
synthesis. Zero-shot multi-speaker is the ability of the model to synthesize voices that
have not been seen during training: in other words, to conserve or imitate new speaker
voices. It has been trained on four datasets: two English datasets, one French dataset, and
a dataset in Portuguese. This last dataset contained only one speaker and was recorded
with a non-professional microphone. This opens up a world of possibilities for languages
with scarce resources. Usually, zero-shot models require a high amount of training data,
with many speakers, and such a magnitude of resources are not available for most languages.
Furthermore, the model can be fine-tuned in specific speakers with just around a minute
of speech recordings to get better results.

In Figure 18, there is a detailed view of the model architecture. The red connections
stop the propagation of the gradient during training, and the ++ character indicates con-
catenation. The main differences from the VITS model will be explained here. As with
the VITS model, the Posterior Encoder is only used during training to glue the acoustic
model with the vocoder, learning to create a z latent variable that extracts meaningful
information from both the aligned text and the linear spectrogram. Additionally, the text
input is not converted to phonemes, so the model can learn languages without a public
grapheme-to-phoneme, as the conversion is not needed.

As for multi-language, the model supports three languages: English, Portuguese and
French. A language embedding is added to the embeddings of the input characters. More
languages could be added later using that embedding. Indeed, during their training process,
they teach the model one language at a time, adding a dataset with a new language after
being trained on the previous language.

With respect to multi-speaker support, during training, speaker embeddings are added
to the flow-based decoder, the posterior encoder, and the HiFi-GAN vocoder. This method
is also briefly introduced and tested in the VITS paper. They use global conditioning from
WaveNet (Oord et al., 2016a) to influence the output distribution across all timesteps
of the flow-based decoder and the posterior encoder. They also added the speaker to
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Figure 18: Training and inference processes of YourTTS from the original paper (Casanova
et al., 2022b).
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the transformer-based encoder and the decoder and passed it to the stochastic duration
predictor. Moreover, they added Speaker Consistency Loss (SCL) (Xin et al., 2021) to the
final loss. This loss maximizes the cosine similarity between the speaker embedding of the
ground truth and the generated audio. We can see it in Equation 12, where the α value is
a positive number to determine the importance of this loss in the final loss, and ϕ(·) is the
function returning the embedding.

LSCL =
−α

n
·

n∑
i

cos sim (ϕ(gi), ϕ(hi)) (12)

This Speaker Consistency Loss will be added to the final loss we showed before for
the VITS model in Equation 4. The rest of the losses stayed the same, as we can see
in Equation 13. The external H/ASP model is used to generate the speaker embeddings
(Heo et al., 2020): this is the ϕ(·) function above. This model is already trained and is
not fine-tuned here. This speaker recognition model achieved state-of-the-art results in the
Vox-Celeb 1 test split (Chung et al., 2018), a dataset containing more than 6,000 speakers.

Lvae = Lrecon + Lkl + Ldur + Ladv (G) + Lfm (G) + LSCL (13)

2.2.7 NaturalSpeech

During the development of this research, a new promising model was released called Natu-
ralSpeech (Tan et al., 2022) by a research team in Microsoft. This model far exceeded the
results of the VITS and other state-of-the-art models, obtaining the best results in the art
to date and without increasing inference time. As shown in the paper (Tan et al., 2022)
and in Table 1 here, the quality of the generated audios has no statistically significant
difference from ground truth recordings. In their paper, they also propose a definition
of what human-level audio quality means in a statistical way using CMOS and Wilcoxon
signed rank test (Wilcoxon, 1945).

In Figure 19, there is a general diagram of the model. As can be seen, it has some
similarities with the previous models mentioned here. The inputs are phonemes, and
the outputs are the raw waveform. The model also uses a VAE to reduce the speech
signal into a compressed latent variable that conserves just the main information. The
authors propose to use a VAE model with a memory bank with attention. The input
to the Posterior Encoding is only used during training and are linear spectrograms like
in VITS. The Posterior Encoder is also formed by WaveNet modules, in this case, 16 of
them. The Wave Decoder is formed by 4 residual convolutions and represents the vocoder.
The Bidirectional Prior/Posterior is a module based on flow models (Dinh et al., 2014)
to improve the quality of the prior (p(x|y)) and simplify the posterior (q(z|x)). This is
similar to the Flow modules seen before. The Phoneme Encoder has been previously pre-
trained on an extensive corpus to create better representations. As in VITS, it is composed
of Feed-Forward Transformers blocks from FastSpeech (Ren et al., 2019), 6 in this case.
Similarly, there is a duration module, in this case, composed of a 3-layer convolution with
an upsampling layer.
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Figure 19: Architecture overview of NaturalSpeech from the original paper (Tan et al.,
2022).

Summarizing, NaturalSpeech improves VITS by adding phoneme pre-training on a
larger corpus, adds a differentiable durator operating at the frame level; it reduces the
posterior, enhancing the prior using normalizing flow, and adds a memory-based VAE to
improve the prior even further. Although the NaturalSpeech model is large, monolingual,
and mono-speaker, due to its importance and relationship with the other models, we have
considered it appropriate to give an overview of it. For more details, the reader can refer to
the paper, which is rich in detail, to the code they have published2, and to their website3

with more information about their research.

2.3 Contributions

This research was initially proposed to train a multilingual Text-to-Speech model with
support for Basque and Spanish. The idea was to use the YourTTS model, currently
supporting English, Portuguese, and French, and see if we can add new languages to it
without degrading its performance. As some languages like Basque do not have a compa-
rable amount of resources, training it in a multilingual configuration may help the model
learn it. As Spanish has similar phonological and phonetic linguistic rules, they may help
each other get good results. In the same way, other minor languages from Spain, like Cata-
lan and Galician, will be tested with the model. At the same time, having a multilingual
model can alleviate the memory and resource usage of the model during inference since
recent neuronal synthesis models, even though they give good results, have a considerable
size. On top of that, a Speech-to-Speech Translation prototype has been designed using
these synthesis models and other Deep Speech and Machine Translation models in a cas-
cade set-up. The initial idea is to focus on the development model here and continue doing
research on the other models later on.

2https://github.com/microsoft/NeuralSpeech
3https://speechresearch.github.io/naturalspeech/
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2.4 Chapter Summary

In this chapter, we have seen a summary of models used for speech synthesis from the
beginning of time to today’s recent trends. The first machines capable of synthesizing
audio began in the middle of the last century, starting with mechanical and more para-
metric methods that required an expert to configure and use. Subsequently, concatenative
models arose, simpler but with limitations and requiring a lot of data to give good results.
Afterward, statistical models were used, which combined flexibility with being intelligible
(HMM), but still sounding unnatural. Lately, neural models have emerged and have been
introduced, achieving a quality close to humans: which are formed by the classic feed-
forward networks (FFN), convolutional neural networks (CNN), Recurrent Neural Net-
works (RNN), and the recent transformer. Finally, we have reviewed the state-of-the-art
neural models that are working best, covering the different most used approaches, including
flow-type (Glow-TTS), diffusion-type (Grad-TTS), and non-autoregressive models (VITS).
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3 Methodology

In this section, a detailed description of all the processes involved in creating the Text-to-
Speech synthesis models is provided. This includes the methods and tools used and created
for preparing the datasets, configuring the models, performing the training steps, and the
final evaluation of all the systems involved.

3.1 Project Setup

In order to do a proper project setup, a deep study, and analysis of the state-of-the-art
models have been performed. We were searching for multilingual, multi-speaker models
of medium size. All this process has been documented carefully and reviewed and guided
by the tutors on a weekly basis. At the beginning of this work, the YourTTS model was
indisputably the one that came closest to our needs.

The main goal of the project was to develop a model with support for at least three
languages: English, Basque, and Spanish. For that, we needed suitable cleaned-up datasets
with those three languages, hardware to train the models, and reviewers to evaluate the
results generated by the models. In the following subsections, the process of these steps is
described.

3.2 Data Preparation

As we were using a pre-trained model and decided to conserve the previous model language
capabilities, we needed to both download the original datasets and add new datasets for the
languages we were interested in adding. All the data have been pre-processed, including
both the text and audio files. In the next subsections, the datasets used and the pre-
processing methods are described.

3.2.1 Datasets

The English datasets re-used from the previous pieces of training are the VCTK and
LibriTTS, with around 256 hours of audio data and 2,585 speakers. For Portuguese, the
TTS-Portuguese (Casanova et al., 2022b) dataset has been reused with only one speaker
and around 10 hours of speech. Similarly, for the French language, M-AILAB (Solak, 2017)
has been included, with 170 hours of recordings and five speakers.

Additionally, other datasets have been included with the purpose of learning the new
languages. For Basque, two datasets have been added: OpenSLR-76 (Kjartansson et al.,
2020) and a dataset provided by the Aholab Signal Processing Laboratory research group
called TTS-DBEU (Sainz et al., 2012), both of them reaching a total of 36 hours and 66
speakers. For Spanish, another two datasets provided by the Aholab have been included,
TTS-DBES (Sainz et al., 2012) and ELRA-TC, with a total of 30 hours of recording but
only one new speaker. Something important to notice here is that all the speakers in
TTS-DBES are also in TTS-DBEU dataset, so when the Spanish language is added, only
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one new speaker is added to the whole dataset included in the training. Other Spanish
datasets available online have been considered, but most of them mix Spanish accents from
different countries without classifying or differentiating them. Being the Spanish language
one of the most spoken languages in the world, it has many dialects and variations, and we
thought mixing all these variants together could considerably increase language complexity
and hinder the learning process. Therefore, many datasets have been discarded so as not
to confuse the model. Without having ruled out including the entire range of dialects in
a more than possible future work, we decided to progress with the Castillian variation of
the Spanish language for now. For Galician and Catalan, OpenSLR-69 and OpenSLR-
77 (Kjartansson et al., 2020) datasets have been included, having around 12 hours of
recordings and 80 speakers. In Table 2, there are the details of each of the datasets
summarized.

Dataset Language Recordings Speakers Female Male Time Size
VCTK English 44,453 110 63 47 6:12:53 3.6 GB
LibriTTS English 155,471 1,620 889 731 249:52:01 29 GB
TTS-Portuguese Portuguese 3,625 1 0 1 9:38:45 1.1 GB
M-AILAB French 90,321 5 2 3 173:46:04 19 GB
TTS-DBEU Basque 20,698 14 7 7 26:57:27 6.4 GB
OpenSLR-76 Basque 7,136 52 29 23 9:01:56 2.0 GB
TTS-DBES Spanish 16,158 5 3 2 19:05:28 4.5 GB
ELRA-TC Spanish 5,432 1 1 0 9:48:13 2.2 GB
OpenSLR-69 Catalan 4,240 36 20 16 4:55:23 1.1 GB
OpenSLR-77 Galician 5,587 44 34 10 6:45:47 1.5 GB

Table 2: Datasets used for training the models. The size is after extracting the contents
and having the recordings in wav format.

3.2.2 Text Pre-Processing

Text normalization is the process of converting an input text with a previously unknown
form to a single canonical form that guarantees its consistency before using it for other
purposes. It is a common process recommended before using it for speech synthesis models,
as it helps them focus on producing speech rather than internal text transformations.
Usually, this process includes converting numbers and dates to text, expanding acronyms
and abbreviations, transformations to facilitate the pronunciation of foreign words, and
the like.

As it is expected, this process may differ from language to language. And as we are
dealing with different languages here, a python library called normalize-text4 has been
created as a wrapper for the different tools used depending on the language. This tool
currently supports the following languages: Basque, Galician, Catalan, Arabic, Czech,
German, English, Spanish, Farsi/Persian, French, Italian, Luxembourgish, Dutch, Russian,

4https://gitlab.com/xzuazo/normalize-text
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Swedish, and Swahili. To be more specific, the tool uses an AhoTTS module for Basque
(Hernaez et al., 2001); it also uses Cotovia for Galician (Rodŕıguez Banga et al., 2012),
FestCat for Catalan (Bonafonte et al., 2009), and gruut (Hansen et al., 2022) for the rest of
the languages. In the Examples below, sentence transformations can be seen as the library
processes them. Example 3.1 uses Aholab’s AhoTTS module to normalize a sentence in
Basque. Example 3.2 uses Gruut for the Spanish language. As Spanish is supported by
other underlying libraries like AhoTTS or Cotovia, this can be changed if required. We
used Gruut for Spanish after some testing because it was the least aggressive normalization.
The last Example 3.3 uses the FestCat Festival module to normalize Catalan using a short
script in Scheme.

Example 3.1
Original text in Basque: Kaixo, gaur 2022/03/07 da.
Normalized text: Kaixo, gaur bi mila eta hogeita biko martxoaren zazpia da.

Example 3.2
Original text in Spanish: Hola, hoy es 3/7/2022.
Normalized text: Hola, hoy es tres de julio de dos mil veintidós.

Example 3.3
Original text in Catalan: Hola, avui és 3/7/2022.
Normalized text: Hola avui és tres de juliol del dos mil vint-i-dos.

In addition to the text normalization library mentioned above, the texts in Basque have
been manually reviewed, and some of the subjective changes have been widely discussed
with the tutors. For example, the OpenSLR-76 dataset includes many anglicisms, many
more than are normally used in common speech. Because of this, many foreign names and
words have been altered to be closer to the actual pronunciation based on the phonology
rules of the language. To find these foreign words, a small tool has been developed that
uses the fastText library (Mikolov et al., 2018) to predict the language of each word in each
sentence. This library uses a set of publicly available pre-trained models for efficient text
classification and representation learning that can be used for language detection, among
other tasks. The foreign words found by the library have been manually reviewed and
changed if the pronunciation in the recorded audio differed a lot from the text transcribed.
A similar process has been carried out in the Spanish datasets. The rest of the datasets,
however, have only been pre-processed by the automatic normalization tool.

3.2.3 Audio Pre-Processing

As we are using varied datasets from different sources, the formats of the files vary con-
siderably. For training our Text-to-Speech model, all the audios have been normalized in
multiple steps: format and volume homogenization, recording denoising, and silence trim-
ming. As for the format, all the audios have been transformed to pulse code modulation
(PCM) with a mono channel setup and a sample rate of 16 kHz with a bit-depth of 16 bits.
For this, the SoX tool has been used. Afterward, silences have been removed with a script
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using the webrtcvad5 python bindings for the Google WebRTC (Sredojev et al., 2015) Voice
Activity Detection (VAD) module. Then, an additional denoising step has been performed
using the causal speech enhancement model from Facebook (Defossez et al., 2020). Fi-
nally, the volume has been normalized to -27dB using the Root Mean Square-based (RMS)
normalization using ffmpeg-normalize6.

3.3 Text-to-Speech Training

For the training, an internal fork of the official Coqui-TTS (Eren and The Coqui TTS
Team, 2021) has been used. The code has been slightly modified to fit our experiment
setup and to train on multiple steps following an approach similar to the one used for the
original YourTTS models. There are a total of four experiments, and each experiment is
split into two pieces of training.

The first training is focused on learning the new language without the speaker cosine
similarity loss, using Equation 4 for the loss. As languages may differ a lot, this step
will take longer for some languages than for others, requiring more steps. Following the
previous training of languages with this model, a total of 140k steps have been performed.
In Equation 14, we can see how to calculate the number of epochs for each experiment.
In our case, a batch size of 48 was used on a single GPU, and N refers to the number of
instances of utterances or recordings, which varies in each experiment.

epochs =
steps · batch size · gpus

N
(14)

The second piece of training is to learn to imitate the speakers, focused on taking the
speaker cosine similarity loss into account without completely disabling the previous losses,
using Equation 13. This step was shorter, taking only around 50k steps.

Both pieces of training were performed on an NVIDIA Titan RTX with 24 GB of
memory, 576 tensor cores, and 4608 Cuda cores. Each of the experiments took around one
week of training to complete, including both of the training pieces. From that full training
process, the epoch with the best validation score was chosen for the final model.

3.4 Evaluation Method

Multiple evaluation methods have been used to test the quality of the speech synthesized
from the different models trained. All of them will be evaluated using the same methods.
Both automatic and manual evaluation methods will be used to test the quality of the
generated audio and the speaker’s similarity.

In this research, the Mean Opinion Score (MOS) will be used to evaluate the generated
speech by having real human evaluators participate in listening and scoring the sentences
through the Internet. MOS is a subjective measure to evaluate signal processing methods
that can be used to approximate human perception by small studies.

5https://github.com/wiseman/py-webrtcvad
6https://github.com/slhck/ffmpeg-normalize
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To test the abilities of the model to generate speech for specific speakers, audios from
the ground truth will be compared with generated audios for the same speaker.

3.4.1 Automatic Evaluation

Automatic evaluation methods will use different existing models to get a score from the
ground truth and generated audio files, and we will compare them. There exist multiple
models that generate a score that tries to approximate the subjective MOS performed by
real humans. VoiceMOS (Huang et al., 2022) is a challenge to find an automatic way
to predict the mean opinion score where different research teams present their solutions
and compete with each other. In the 2022 edition of the competition, they used different
metrics to evaluate the system for each of the participants: system-level and utterance-
level mean squared error (MSE), Linear Correlation Coefficient (LCC), Spearman Rank
Correlation Coefficient (SRCC), and Kendall Tau Rank Correlation (KTAU). We decided
to use two models from that competition: one the baseline SSL-MOS model (Cooper et al.,
2021), and one of the models from the participants, UTMOS-22 (Saeki et al., 2022) that
has the highest score on several metrics for both the primary track (test data from the
same datasets as training data) and out-of-domain track (test data from datasets not seen
in training). Additionally, the audios will be tested in the NISQA-TTS (v1.0) too (Mittag
et al., 2021), an independent model to test synthesized speech quality from the naturalness
point of view.

Besides, to check the speaker similarity between the ground truth audios and the gen-
erated speech, Speaker Encoder Cosine Similarity (SECS) (Casanova et al., 2021) will be
checked on multiple speakers from both the Spanish and Basque datasets. This algorithm
checks the cosine similarity between generated speaker embeddings. The resulting score
goes from -1 to 1, with bigger values indicating stronger similarity. Based on YourTTS work
(Casanova et al., 2022b), the speaker embedding will be generated using the Resemblyzer
speaker encoder (Wan et al., 2017).

There is an additional metric used internally to debug some problems we found on some
of the models, which we called Regex-Error-Rate (RER). We found some of the models
have problems pronouncing some characters correctly at the end of the sentence, so Speech-
to-Text models have been used to evaluate the correctness. The most problematic phones
were the voiced alveolar tap [R] and the voiced alveolar trill [r] corresponding to the ”r”
character pronunciation. For that, we first generated a Text-to-Text speech model merging
in cascade our Text-to-Speech (the model to evaluate) and the Speech-to-Text model. This
model generates speech from text and converts it back to text. The Speech-to-Text models
used for this are DeepSpeech models, some of them available online, others trained in-house
(see Chapter 5.3 for details). The full alphabet for Basque was tested using the Text-to-
Text speech model, investigating whether other characters may have a similar problem:
the ”j” character had a similar problem, but that character is not very common in Basque
at the end. Checking the rest of the alphabet, the other characters had no problem. So
we focused on the R-Error-Rate metric, sampling sentences ending in ”r” character using
the ".*r[.]?$" regular expression and passing them through our Text-to-Text model. We

Language Analysis and Processing



Basque and Spanish Multilingual TTS Model 36/90

synthesized a total of 1000 sentences for both Basque and Spanish. Then we checked if
the output transcription still passed the regular expression. This metric can be used to
evaluate sentences ending in other characters or meeting other different regular expression
criteria. Still, we will focus mainly on the ”r”-ending sentences here.

3.4.2 Human Evaluation

Human MOS scores have also been gathered using an online Web MOS Evaluation Interface
provided by the Aholab research team 7. In Figure 20, we can see how the final interface
looks like for the evaluators, for the Basque language in this case. After writing their
personal information, the users need to listen to the reference audio (Erreferentzia) and
the audio to evaluate (Puntuatzeko) and give a score from 1 to 5 for the naturalness
(Kalitatea) and speaker similarity (Antzekotasuna). The interface has been updated to
improve cross-browser and mobile device support. Additionally, multi-language support
has also been added to translate the explanations to the language being tested by the
evaluator.

With the help of this tool, we calculated both the MOS for speech naturalness and the
Sim-MOS for speaker similarity. We evaluated using speakers from the training dataset
and external speakers in separate tests to know the models’ performance in real-life sce-
narios with unknown voices. The external speakers were provided by the ZureTTS voices
bank (Erro et al., 2014, 2015). During the evaluation, we used 16 native Basque speaker
contributors and 24 native Spanish contributors. For each of the models, we synthesized
50 sentences for both Spanish and Basque. The Spanish sentences have been sampled
from the phonetically balanced Sharvard corpus (Aubanel et al., 2014). For the Basque
sentences, the 50 sentences used for the Spanish sentences have been translated by hand.
Then the synthesized sentences were evaluated through the MOS evaluation interface by
the evaluator’s team of the Aholab research group.

3.5 Prototype Development

The online prototype is a web interface around the Text-to-Speech and Speech-to-Text
models used here to generate Speech-to-Speech Translation (S2ST). All the Text-to-Speech
models were trained during the research here. Some of the Speech-to-Text models were
trained during our research here; others were downloaded online. Moreover, it includes
Machine-Translation models on inference configuration. All three different modules can be
tested on different sections. Additionally, thanks to this modular architecture, a Speech-
to-Speech mode can be tested that uses the trained models underneath. With this, a
speech-to-speech language translation can be performed, both conserving the speaker’s
voice or also selecting between a list of speakers from the training dataset. For more
details about the development of this prototype, check Chapter 5.

7https://aholab.ehu.eus/users/xzuazo/mos/eu/
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Figure 20: Web MOS Evaluation Interface for the Basque language.
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3.6 Chapter Summary

In this chapter, the methodology followed to complete this research has been described
from beginning to end. Firstly, the dataset selection and preparation, including text and
audio pre-processing tasks. Then the model preparation and configuration, with training
details, required software and hardware, and approximate time required. Finally, the
different evaluation methods chosen to assess the quality of the final Text-to-Speech models
have been presented. In the next chapter, the specific setup and results of each of the
experiments will be presented.
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4 Findings

In this chapter, the training progress of each experiment is shown, together with the
evaluation results and some findings. We have devised a total of four main experiments
to train a multilingual Text-to-Speech model incrementally, adding new languages in each
experiment and checking if the model continues to progress. The complete process consists
of training for Basque in the first experiment, Spanish in the third experiment, and Catalan
and Galician in the third experiment; the fourth and latest experiment is just an extension
of the learning process without new information. In the last section, some additional
experiments will be described that were finally discarded because they did not reach the
expected results. Still, we consider them relevant because they explain the decisions taken
in the other experiments.

All the experiments use the same YourTTS model (Casanova et al., 2022b), and most
of them have a very similar setup; most of the changes are related to the datasets, cleaning
the examples properly and adjusting the steps. At the same time, each of the experiments
is split into two pieces of training: a first longer training step focused on learning the new
language of around 140k steps, and a second shorter training step focused on learning the
new speakers of around 50k steps. The latter is called Speaker Consistency Loss training
(SCL) and is where the SCL loss is activated (see Equation 12 for more information).

As we progress in each experiment, the new model will be evaluated and compared
with the previous experiment. Evaluation metrics are both audio naturalness and speaker
similarity related. Automatic metrics are generated by computer models and try to ap-
proximate real human perception of the generated speech. In addition, the ”r”-ending
sentences Error Rate also will be evaluated using a Speech-to-Text model. In total, we
provide three automatic evaluation metrics for audio naturalness (SSL-MOS, UTMOS-22,
and NSIQA) to provide three independent points of view, an automatic evaluation metric
for speaker similarity (SECS), and an R-Error-Rate score. Human metrics have been eval-
uated by the Aholab group evaluation team using a web evaluation interface (see Section
3.4 for more details), and they provide both naturalness MOS and speaker similarity MOS
(Sim-MOS). Values given for the scores will be the mean and the 95% confidence interval
when available.

4.1 Experiment 1: Basque Language

In this experiment, we will part from a multilingual model provided by the Coqui-TTS
team that already supports three languages: English, Portuguese, and French. The idea
is to add Basque support to this model following the training process described in the
YourTTS original paper (Casanova et al., 2022b). This will be done in a way that does not
forget previously learned languages. In other words, the Text-to-Speech model produced
here will support four languages in total: English, French, Portuguese, and Basque.
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4.1.1 Experimental Setup

For this experiment, two Basque audio datasets with transcriptions have been added:
TTS-DB (provided by Aholab) and OpenSLR-76 (Kjartansson et al., 2020). These datasets
contain a total of 36 hours of audio recordings and 66 speakers. During the pre-processing of
both datasets, metadata files have been generated using BRSpeech-based format (Casanova
et al., 2022a,b) for each of the datasets. The format consists of a tab separate value file
with the audio file relative path, the pre-processed text, the post-processed text, and
the speaker. In the original BRSpeech format, the second field is the file size in bytes,
which is a format frequently used for STT tasks, but here we decided to use the pre-
processed text to aid in the laborious text normalization task. Additionally, in order for
the model not to forget the previous languages and speakers, the following datasets have
been prepared and pre-processed as described in YourTTS paper (Casanova et al., 2022b):
VCTK (Christophe Veaux and MacDonald, 2017) and LibriTTS (Zen et al., 2019) for
English, TTS-Portuguese (Casanova et al., 2022a) for Portuguese and M-AILABS (Solak,
2017) for French. All these datasets have been pre-processed in the exact same way, using
the developed normalize-text tool for the text and an audio normalizing process of three
steps: silence trimming, audio denoising and volume normalization (see Section 3.2 for
more details). Including all the datasets, this model will be trained in around 475 hours
of audio recordings and 1310 speakers.

To make the training faster, we used transfer learning from a pre-trained YourTTS
model. This model was already trained for English, Portuguese, and French using the
same datasets. For the first step of this experiment, 262,121 instances of recordings will
be used in total for training with a sequence length between 30 and 250 characters with
an average sequence length of 91 characters. Following Equation 14, we will do a first
training step to learn the Basque language of 26 epochs (5460 steps/epoch). In this step,
the batch size used has been reduced to 48 due to hardware constraints. The loss used
here will be the one used for the original VITS model (Kim et al., 2021) (see Equation 4
for more details).

For the second step focused on learning new speakers (SCL), 179,426 instances will be
used of length between 60 and 270 characters, with the same sentence average length as
in the previous training. Following the same equation, we will train the SCL model for
11 epochs (4600 steps/epoch). The batch size used for this second step is reduced to 39,
and the α value of SCL loss has been set to 9 as in the YourTTS paper (Casanova et al.,
2022b). Therefore, the loss used for this step will be YourTTS model loss, including the
speaker cosine similarity loss (LSCL, see Equation 13 for more details).

4.1.2 Evaluation and Result

The duration of the full experiment training took around 4 days for the first step and the
second step around a day and a half, making a total of 5.5 days to complete the whole
experiment.

In Figure 21, we can see the full training plots of Experiment 1, including all the losses
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for train and development splits with its internal name in both official VITS 8 and Coqui-
TTS 9 implementations. Loss disc refers to the HiFi-GAN Discrimination Loss (Ladv(D))
presented in Equation 9: this loss is supposed to increase, as the discriminator is supposed
to have more difficulties in differentiating between real and generated examples as the
training progresses. Loss duration is the Duration Loss (Ldur(D)) presented in Equation
8, and as we see, it has difficulties improving, probably because it already knows common
lengths of phonemes from previous pieces of training. Loss feat shows the Feature Loss
(Lfm(G)) of the HiFi-GAN presented in Equation 11, it measures the differences in features
between the discriminator and the generator on each layer of the GAN: here we can see
how the loss decreases considerably, particularly in the first 50k steps. Loss gen refers
to the Generation Loss (Ladv(G)) of the GAN presented in Equation 10. Loss kl is the
Kullback–Leibler (KL) divergence loss (Lkl) explained in Equation 6 to compare entropy
between the input linear spectrogram and characters with the estimated alignment created
by the flow: we can see how the model finds some difficulties to decrease this loss, maybe
due to the statistical complexity increase as we add new languages. The last loss is Loss
mel and refers to the mel-spectrogram Reconstruction Loss (Lrecon) presented in Equation
5: this loss has a slight but continuous descent in the development loss.

Finally, we have the Loss 0 and Loss 1 that gather together the losses that need to
decrease for the former and the losses that need to increase for the latter. The Loss 0 is the
same as the combination of the VAE and GAN training final loss we presented in Equation
4 as Lvae: summing up Loss duration, Loss feat, Loss gen, Loss kl, and Loss mel. The Loss
1 is just the same as the Discriminator Loss or the Loss disc recently explained. Both of
these losses have the expected trend when putting together all the losses just explained.

In Figure 22, the training plots of the Experiment 1 SCL part are presented. During
this training, the model is focused on training the new speakers more than the language.
As it is shown, there is a new loss named Loss spk encoder that was included in the VITS
model implemented by YourTTS paper (Casanova et al., 2022b). This new loss refers to
the Speaker Consistency Loss (LSCL) introduced in Equation 12 and added to the Loss 0
as previously shown in Equation 13. Checking the development scores, it can be seen that
the Speaker Consistency Loss is the main making improvement; the other losses do not
seem to change much.

In Table 3, we can see the naturalness scores of both pieces of training in this experi-
ment. The scores have been generated by the VoiceMOS 2022 baseline SSL-MOS model.
The ground truth scores correspond to the scores of real recordings from the dataset,
and YourTTS are the scores of the pre-trained model before adding the Basque language
through this experiment. The underlined scores mean that they outperformed ground
truth scores, and the best scores are marked in bold.

Checking the ground truth scores, we can see that the quality for both VCTK and
LibriTTS is quite lower than the English datasets, even below a score of 4 in MOS. This
is because the MOS on MLS-PT and TTS-DBEU should be considered out-of-domain, as

8https://github.com/jaywalnut310/vits
9https://github.com/coqui-ai/TTS/tree/dev/TTS/tts/models
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Figure 21: Experiment 1 training plot, including all the losses for train and development
splits with its internal name in both official VITS and Coqui-TTS implementations.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU

Ground truth 4.08±0.09 4.42±0.04 2.46±0.10 3.19±0.11
YourTTS 4.00±0.11 4.08±0.10 2.45±0.09
Exp.1 4.23±0.07 4.18±0.10 3.42±0.14 3.04±0.09
Exp.1+SCL 4.20±0.09 4.16±0.11 2.69±0.09 3.10±0.10

Table 3: Mean Opinion Score (MOS) approximation by VoiceMOS 2022 baseline SSL-MOS
model after 1st experiment.

Language Analysis and Processing



Basque and Spanish Multilingual TTS Model 43/90

Figure 22: Experiment 1 SCL training plot, including all the losses for train and develop-
ment splits with its internal name.
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SSL-MOS has not been trained on those languages. Checking the experiment results in
English datasets, we obtained better results than ground truth for the VCTK dataset and
not-so-good results for the LibriTTS dataset. However, still, all the scores outperformed
the pre-trained YourTTS model. Moreover, we can see it also got better results than ground
truth on the MLS-PT dataset. This may have some underlying reason, as the Portuguese
dataset was recorded by a single speaker with non-professional equipment, being its quality
not comparable to the other datasets. Training the model on more datasets of better
quality may have affected the synthesis of the Portuguese language by improving it, as the
model may have developed some cross-language naturalness learning ability. As for the
Basque Language in TTS-DB, the scores are lower than ground truth, and all the scores
are pretty low, probably for being an out-of-domain evaluation. Comparing it with the
previous YourTTS model, scores seem to have improved overall. In general, it seems that
the second training step (SCL) obtained worse scores; this may have some sense, as in this
step, the model is more focused on learning the new speakers than on sound naturalness.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU

Ground truth 4.03±0.05 4.31±0.03 2.79±0.08 3.59±0.10
YourTTS 3.63±0.08 3.70±0.09 2.62±0.10
Exp.1 3.80±0.07 3.79±0.07 3.35±0.10 3.13±0.08
Exp.1+SCL 3.79±0.08 3.78±0.09 2.78±0.10 3.18±0.09

Table 4: Mean Opinion Score (MOS) approximation by UTMOS-22 model after 1st exper-
iment.

In Table 4, we can see the naturalness scores of both pieces of training generated by
the VoiceMOS 2022 participant UTMOS-22 model. As with the SSL-MOS model, we see
that Experiment 1 got better scores than the YourTTS model overall. The Portuguese-
generated speech in MLS-PT also gets much better. Still, the second step of the training
has worse results while focusing on training the speakers. An important difference to point
out compared with previous SSL-MOS results is that English scores using VCTK and
LibriTTS are much worse than the ground truth, not even reaching a score of 4.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU

Ground truth 3.75±0.16 3.98±0.14 3.31±0.18 4.11±0.12
YourTTS 3.37±0.10 3.53±0.12 3.19±0.16
Exp.1 3.43±0.11 3.47±0.13 3.13±0.13 3.66±0.15
Exp.1+SCL 3.42±0.10 3.43±0.13 3.12±0.13 3.65±0.15

Table 5: Mean Opinion Score (MOS) naturalness approximation by NISQA v1.0 after 1st
experiment.

In Table 5, there are other naturalness evaluation results, this time by the NISQA v1.0
model. This model gives very low scores, too, even for the in-domain English dataset on
the ground truth. There is no clear winner in these scores: between the original YourTTS
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and the Non-SCL Experiment 1, the scores are tight and within the confidence interval.
Some quality degradation is appreciated in the SCL experiment scores, but it is still very
small.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU

Ground truth 0.824±0.018 0.932±0.008 0.901±0.015 0.900±0.007
YourTTS 0.845±0.009 0.858±0.011 0.803±0.010
Exp.1 0.849±0.009 0.862±0.014 0.813±0.012 0.873±0.023
Exp.1+SCL 0.845±0.010 0.868±0.013 0.817±0.012 0.879±0.027

Table 6: Speaker Encoder Cosine Similarity (SECS) after 1st experiment.

In Table 6, speaker cosine similarity metrics are presented to see how the models are
learning the speakers for each of the datasets. The TTS-DBEU is the only new dataset,
so the others were already known by the pre-trained model. The scores show that, except
for the VCTK English dataset, the speaker similarity improved slightly with the SCL
experiment. Still, the difference is very low and within the confidence interval, so probably
not much appreciable. Indeed, for the VCTK dataset, the SCL scores improved the ground
truth scores calculated from real recordings. Apart from that, the improvements over the
previous YourTTS model are not big but appreciable.

Experiment CER SpkM1 SpkF1 SpkM2 SpkF2 SpkM3 SpkF3 Mean
Ground truth 19.9% 19.1%
Exp.1 20.8% 80.9% 94.5% 93.9% 99.4% 84.7% 95.8% 79.1%
Exp.1+SCL 19.6% 80.0% 92.2% 90.5% 96.5% 91.1% 94.0% 76.0%

Table 7: ”R” at the end problem evaluation on TTS-DB dataset with the Basque language.
The ground truth row represents the Speech-to-Text overall performance in the dataset.
The Mean represents the mean between all the speakers, not just the 6 included here.

Last but not least, in Table 7, the measure R-Error-Rate can be appreciated using an
audio transcription model. In the table presented, the individual RER for 6 speakers for
the TTS-DB dataset in Basque is shown, and the mean, which includes all the speaker’s
RER averaged. The Speech-to-Text model used has a Character Error Rate of 19.9%,
corresponding to the score of the Basque STT Deep Speech model v0.1.4 (see section
5.3.1) without a Language Model transcribing 1000 randomly chosen sentences from the
TTS-DB Basque dataset. The general CER of the model transcribing sentences from the
TTS-DB dataset has been calculated too, following a similar approach of synthesizing 1000
random sentences with a random speaker. As we can see, the experiment CER remains near
the ground truth CER, even reaching a lower value in the SCL experiment. On the other
hand, the Speech-to-Text model has an R-Error-Rate of 19.1% in the TTS-DB dataset,
calculated by checking real recording transcriptions in the same dataset. Since this last
value is on par with the CER value, it can be considered that the ”r” is not a particularly
difficult character for the STT model to recognize and can be used as a good measure for

Language Analysis and Processing



Basque and Spanish Multilingual TTS Model 46/90

the ground truth. The language model of the Speech-to-Text model has been disabled to
avoid statistical word corrections of the transcriptions and focus only on the audio phonetic
characteristics for transcription. For the evaluation, 6 speakers have been selected that we
have confirmed have this problem frequently, 3 female and 3 male. The mean values shown
are averaged over all the speakers in the dataset, which may include speakers in which this
problem is not so recurrent. Basically, this evaluates the correct pronunciation of the ”r”
at the end of the sentence using a Speech-to-Text model to check the sentences. As it can
be appreciated, most of the time, the ”r” is not correctly pronounced at the end of the
sentences. The error seems to be more prominent with female speakers here, but all of
them have very high error rates.

To check the real dimension of the problem of bad pronunciation of R at the end of
the sentences, we listened to the problematic sentences previously. In some cases, a very
soft ”r” can be perceived, even if the Speech-to-Text model has not detected it; in other
cases, it is entirely absent. The full alphabet has been checked, and this problem occurs
mainly with this character and at the end of the sentences. Let us continue exploring this
problem in the next pieces of training.

4.2 Experiment 2: Spanish Language

For this experiment, we do transfer learning from the SCL model obtained in Experiment
1 (see section 4.1) trained in English, Portuguese, French, and Basque, and we will add the
Spanish language support. For that, Spanish recordings will be added without removing the
previous datasets used in Experiment 1. With that approach, we expect the multilingual
TTS model to learn to synthesize Spanish speech without forgetting the previous languages.

4.2.1 Experimental Setup

In this second experiment, two datasets have been added, as in Experiment 1; only in
this case, the recordings are in Spanish. The datasets contain both recorded speech and
their transcriptions. The datasets have been provided by the Aholab group and are the
following: TTS-DB and ELRA-TC. TTS-DB is the same dataset used for Basque, but
that also contains some Spanish recordings: from a total of 14 speakers in TTS-DB, 5 of
them have recordings in Spanish too. This means that those speakers are not new and
were also used for the Basque training in Experiment 1. The ELRA-TC dataset contains
only one speaker. Therefore, only one new speaker will be added, reaching a total of 1311
speakers. The recording time added by this dataset is around 30 hours, so the amount of
the total recording time increased to a value of 505 hours. These new datasets have also
been pre-processed with text-normalize package for the transcriptions and the three-step
audio normalizing process described in Experiment 1 as explained in section 4.1.

This experiment is also split into two training pieces: one to learn the new language and
a second one to focus on learning the speakers. For the first part, a total of 280,689 record-
ing instances have been used with an average sentence length of 91 characters; sentences
shorter than 30 characters and longer than 250 characters have been discarded. Based on
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Equation 14, the model will be trained for 24 epochs to learn Spanish (5847 steps/epoch).
The batch size has not been changed from Experiment 1, which is still 48.

The SCL part of the training will take care of learning the new speaker. Even though
there is only one new speaker, we still tried to train it for a similar length as in Experiment
1. With a minimum sequence length of 60 characters and a maximum sequence length
of 270 characters, we got a total of 190,117 recordings. The SCL model has been trained
for a total of 11 epochs (4874 steps/epoch). The batch size is still 39, as in the previous
experiment, and the α value of SCL loss (LSCL) has been set to 9 again (see Equation 12
for more details).

4.2.2 Evaluation and Result

The first part of the training took approximately 4 days to complete, and the second part
1 day, making a total of 5 days of training.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU TTS-DBES

Ground truth 4.08±0.09 4.42±0.04 2.46±0.10 3.19±0.11 3.16±0.16
Exp.1+SCL 4.20±0.09 4.16±0.11 2.69±0.09 3.10±0.10
Exp.2 4.18±0.10 4.11±0.13 2.73±0.08 3.14±0.11 2.99±0.17
Exp.2+SCL 4.21±0.08 4.12±0.09 2.77±0.10 3.09±0.13 3.06±0.14

Table 8: Mean Opinion Score (MOS) approximation by VoiceMOS 2022 baseline SSL-MOS
model after 2nd experiment.

In Table 8, the naturalness scores by the VoiceMOS 2022 baseline SSL-MOS model
are shown, compared with the previous experimental results. As before, the best results
are shown in bold and underlined if they are better than the ground truth. On balance,
this experiment seems to have better scores than the previous experiment. Just LibriTTS
went a little worse; that is a complex dataset because it has recordings from many different
speakers. Still, the difference between the scores is pretty small and inside the confidence
interval. TTS-DB dataset scores got similar results for Basque and Spanish, which makes
sense because they were recorded using the same hardware and software, and the quality
must be similar. This may imply that recording quality affects the learning capacity of the
model, looking that the scores and both TTS-DB datasets more or less match.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU TTS-DBES

Ground truth 4.03±0.05 4.31±0.03 2.79±0.08 3.59±0.10 3.62±0.15
Exp.1+SCL 3.79±0.08 3.78±0.09 2.78±0.10 3.18±0.09
Exp.2 3.76±0.08 3.79±0.10 2.91±0.09 3.26±0.10 3.13±0.18
Exp.2+SCL 3.80±0.09 3.74±0.07 2.94±0.09 3.20±0.11 3.18±0.15

Table 9: Mean Opinion Score (MOS) approximation by UTMOS-22 model after 2nd ex-
periment.
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In Table 9, there are other naturalness scores, this time provided by VoiceMOS 2022
UTMOS-22 model. Here also, the new experiment scores have improved slightly. Another
aspect to notice is that MLS-PT scores are better than ground truth, as happened in the
non-SCL results of Experiment 1. As before, the scores are very low, especially with the
out-of-domain languages, not reaching a score of 4 even in the ground truth. This may
mean that the scores of non-English languages are not so meaningful. In contrast to the
previous training, this time, the SCL model seems to be behaving better than the non-SCL
model.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU TTS-DBES

Ground truth 3.75±0.16 3.98±0.14 3.31±0.18 4.11±0.12 3.62±0.28
Exp.1+SCL 3.42±0.10 3.43±0.13 3.12±0.13 3.65±0.15
Exp.2 3.50±0.11 3.54±0.13 3.31±0.14 3.67±0.15 3.40±0.24
Exp.2+SCL 3.60±0.11 3.58±0.13 3.23±0.14 3.72±0.14 3.45±0.21

Table 10: Mean Opinion Score (MOS) naturalness approximation by NISQA v1.0 after
2nd experiment.

In table 10, we can see the naturalness scores returned by the NISQA v1.0 model in
Experiment 2. This time the SCL part of Experiment 2 seems to have improved the results
a little. In general, the scores of this NISQA model seem to be too low, not reaching a score
of 4 even for the ground truth recordings, except for TTS-DBEU . In fact, the difference
in the scores obtained by NISQA in TTS-DBEU and TTS-DBES datasets are somewhat
unexpected since both datasets were recorded with the same speakers using the same
equipment.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU TTS-DBES

Ground truth 0.824±0.018 0.932±0.008 0.901±0.015 0.900±0.007 0.884±0.014
Exp.1+SCL 0.845±0.010 0.868±0.013 0.817±0.012 0.879±0.027
Exp.2 0.843±0.010 0.860±0.012 0.813±0.013 0.882±0.021 0.871±0.028
Exp.2+SCL 0.847±0.011 0.861±0.012 0.811±0.012 0.877±0.029 0.871±0.025

Table 11: Speaker Encoder Cosine Similarity (SECS) after 2nd experiment.

The speaker similarity automatic score is shown in Table 11. The differences between
the experiments are very low, and there is no clear winner here. The reason may be that
this dataset only contains one new speaker, so there is not much new to learn. The other
speakers from TT-DBES were already in TT-DBEU , so not much improvement can be made
by the model. Additionally, the difference in scores falls between the confidence interval,
so no clear conclusion can be drawn.

As for the previously mentioned R-Error-Rate, there is a clear improvement. In Table
12, we can see the percentage of error detected by the Speech-to-Text model. The mean
error rate went down from 76% to 56% by adding the Spanish dataset and training for
longer. Even though there is a clear decrease in the R-Error-Rate, the scores are still very
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Experiment CER SpkM1 SpkF1 SpkM2 SpkF2 SpkM3 SpkF3 Mean
Ground truth 19.9% 19.1%
Exp.1+SCL 19.6% 80.0% 92.2% 90.5% 96.5% 91.1% 94.0% 76.0%
Exp.2 20.0% 63.5% 78.2% 80.8% 99.4% 41.8% 88.3% 61.1%
Exp.2+SCL 19.6% 59.9% 64.5% 76.8% 95.1% 50.9% 76.9% 55.9%

Table 12: ”R” at the end problem evaluation on TTS-DB dataset with the Basque language
after 2nd experiment.

high, all of them above 50% and far from the mean transcription error rate of 19%. The
CER of the new models still remains around the CER of the STT model on real data, and
again the SCL model has even improved the ground truth CER scores.

As a summary of the results of this experiment, not only did we add a new language
to it, but also the overall scores seem to be improved for the previously known languages
as well. This may be due to the addition of more data to train, the longer training time,
or both.

4.3 Experiment 3: Catalan and Galician Language

In this experiment, something new will be tried: learning two new languages at the same
time. Starting from our previous model trained on English, Portuguese, French, Basque,
and Spanish, 5 languages in total, using transfer learning, we will try to teach the model
two new languages: Catalan and Galician. These languages have some phones and tran-
scription rules in common with previous languages, so we expect the model not to have
great difficulties. To do this experiment, again, the previous datasets will be reused, adding
to them two new datasets: one for Catalan and another for Galician.

4.3.1 Experimental Setup

The two datasets used for this experiment will be OpenSLR-69 for Catalan and OpenSLR-
77 for Galician (Kjartansson et al., 2020). The OpenSLR-69 contains 36 speakers, and
OpenSLR-77 47 new speakers, in total adding 5 and 7 hours of recordings to the complete
dataset, respectively. These new dataset transcriptions have been pre-processed using
normalize-text, which uses Cotovia and FestCat in the background for text normaliza-
tion, the former for Galician and the latter for Catalan. Additionally, all the audios have
been normalized as with the previous datasets: silence trimming, denoising, and normal-
izing volume.

The experiment will follow the same approach as before, splitting the training into two
parts. The first will be longer and focus on learning the 2 new languages; the second part
will be to learn the speakers. For the first part, we got a total of 289,203 instances after
removing sentences shorter than 30 characters and longer than 250 characters. Following
Equation 14, the model will be trained for 29 epochs (4874 steps/epoch). The batch size
has been maintained at 48.
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The second part of the experiment consists in focusing on the speakers. There are
many new speakers, yet we decided to continue training for the same steps as before.
Removing sentences longer than 270 characters and shorter than 60 characters, a total of
194,637 sentences have been used. The average sentence length for both parts is around
89 characters per sentence. Based on Equation 14, the model needs to be trained for 11
epochs (4990 steps/epoch). The α value of the LSCL loss has been maintained at 9.

4.3.2 Evaluation and Result

The training took around 4 days for the first part and 2 days for the second part, making
a total of 6 days: a little longer than before.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU TTS-DBES

Ground truth 4.08±0.09 4.42±0.04 2.46±0.10 3.19±0.11 3.16±0.16
Exp.2+SCL 4.21±0.08 4.12±0.09 2.77±0.10 3.09±0.13 3.06±0.14
Exp.3 4.07±0.08 4.04±0.10 2.74±0.09 3.03±0.12 3.02±0.12
Exp.3+SCL 4.19±0.09 4.06±0.10 2.78±0.09 3.14±0.12 3.16±0.16

Table 13: Mean Opinion Score (MOS) approximation by VoiceMOS 2022 baseline SSL-
MOS model after 3rd experiment.

In Table 13, we can see the estimated MOS by the SSL-MOS model. In this case, the
situation is a little different from the previous experiments. The English language speech
quality decreased slightly. However, the Basque and Spanish language’s speech quality
continued to improve by a notch. Another fact to highlight is that the Spanish speech
synthesis reached the quality of the ground truth. This may be because there is a high
similarity between the Catalan, Galician, and Spanish languages phonetically. Comparing
both models from the experiment, the SCL seems to be a little better with out-of-domain
languages, getting little worse scores for English.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU TTS-DBES

Ground truth 4.03±0.05 4.31±0.03 2.79±0.08 3.59±0.10 3.62±0.15
Exp.2+SCL 3.80±0.09 3.74±0.07 2.94±0.09 3.20±0.11 3.18±0.15
Exp.3 3.70±0.06 3.71±0.09 3.02±0.09 3.18±0.10 3.13±.013
Exp.3+SCL 3.82±0.08 3.72±0.08 2.98±0.10 3.29±0.10 3.29±0.15

Table 14: Mean Opinion Score (MOS) approximation by UTMOS-22 model after 3rd
experiment.

The speech quality scores by the UTMOS-22 model can be appreciated in Table 14.
Even though all the scores are very low, never reaching 4, the overall tendency is for
improvement. There are still some difficulties in improving the synthesis of English using
speakers from LibriTTS. As this dataset is big and with many different speakers, it is
frequently the most challenging; there may not exist much room for improvement. The
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Portuguese synthesis continues to be better than ground truth, probably due to out-of-
domain difficulties. As with the previous scores, here, the SCL version of the experiment
seems to be a little better, but still, the difference is within the confidence interval.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU TTS-DBES

Ground truth 3.75±0.16 3.98±0.14 3.31±0.18 4.11±0.12 3.62±0.28
Exp.2+SCL 3.60±0.11 3.58±0.13 3.23±0.14 3.72±0.14 3.45±0.21
Exp.3 3.40±0.12 3.40±0.13 3.27±0.17 3.49±0.15 3.26±0.20
Exp.3+SCL 3.50±0.12 3.63±0.13 3.39±0.15 3.74±0.16 3.44±0.23

Table 15: Mean Opinion Score (MOS) naturalness approximation by NISQA v1.0 after 3rd
experiment.

The latest MOS naturalness score approximation for this experiment will be the NISQA
v1.0 model scores shown in Table 15. Here the results are not so good: instead of having
problems synthesizing English using LibriTTS speakers, the problem appears in the VCTK
dataset. Apparently, this model has been trained for so long in English datasets that there
is not much improvement to be done in that language. Apart from that, the model seems
to continue improving in the Portuguese and Basque synthesis. The scores for Spanish
reported by this model are worse, though: this differs from the scores in previous VoiceMOS
SSL-MOS and UTMOS-22 models done before.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU TTS-DBES

Ground truth 0.824±0.018 0.932±0.008 0.901±0.015 0.900±0.007 0.884±0.014
Exp.2+SCL 0.847±0.011 0.861±0.012 0.811±0.012 0.877±0.029 0.871±0.025
Exp.3 0.847±0.008 0.862±0.011 0.807±0.013 0.875±0.026 0.877±0.024
Exp.3+SCL 0.855±0.008 0.866±0.011 0.807±0.015 0.883±0.023 0.879±0.029

Table 16: Speaker Encoder Cosine Similarity (SECS) after 3rd experiment.

With respect to speaker similarity, in Table 16, we can see the Speaker Encoder Cosine
Similarity scores. The speaker similarity for the Portuguese language, containing only one
speaker, went a little worse. It may not be much space for improvement after training for
so long in this dataset containing a single speaker. In the other datasets, there has been a
small improvement. The VCTK scores continue being above ground truth and improving
little by little.

Concerning the problem of ”r” pronunciation at the end of sentences, in Table 17, the
R-Error-Rate can be inspected. Compared with the previous experiment, the mean error
rate of all the speakers in the TTS-DB dataset has been reduced, but not as much as with
the previous experiment. It seems that as the training progresses, it is more challenging
to reduce the error. On the other hand, something changed in this experiment: this time,
the non-SCL part of the experiment had a lower error rate, and the SCL training made
the score worse. In addition, there is more variability between scores in the speakers. This
may be because now there are much more speakers in the whole dataset. Consequently,
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Experiment CER SpkM1 SpkF1 SpkM2 SpkF2 SpkM3 SpkF3 Mean
Ground truth 19.9% 19.1%
Exp.2+SCL 19.6% 59.9% 64.5% 76.8% 95.1% 50.9% 76.9% 55.9%
Exp.3 19.1% 48.3% 45.2% 90.7% 93.0% 43.0% 61.2% 44.1%
Exp.3+SCL 19.9% 43.9% 62.1% 86.4% 92.7% 58.9% 64.9% 50.3%

Table 17: ”R” at the end problem evaluation on TTS-DB dataset with the Basque language
after 3rd experiment.

the model has more speakers to learn, so it cannot focus on improving specific speakers so
much: TTS-DB does not have many speakers (9 speakers) compared to the newly added
datasets (83 speakers). So those speakers from TTS-DB may have lost importance for the
model. The CER of the synthesized sentences still remains around the ground truth CER,
getting the best score we got so far of 19.1 in Experiment 3 without SCL. On the whole,
the scores in this experiment have improved, but they are yet far from the ground truth
scores.

4.4 Experiment 4: Continue Training

This last experiment will be a little different from the others. Here we are not going to
add any new language. The purpose of this experiment is to continue training for the same
languages, using the same datasets for longer, to see if the scores improve. Specifically,
we are interested in seeing if the R-Error-Rate can be decreased. At the same time, we
are going to see how the rest of the scores progress, thus checking if this model can be
improved in general just by training for longer.

This time, we are going to compare this experiment’s results with all the experiments
done before and get an overview of all the models developed.

4.4.1 Experimental Setup

The experiment setup is exactly the same as in Experiment 3. The same datasets will
be used, and the same hyperparameters. This time, the length of the training will be
increased for the non-SCL part. The first piece of training will be trained for around 250k
steps. In that training, a total of 289,066 recorded instances will be used, having a total
of 42 epochs for the entire training. The second part will for the same number of steps as
before: 12 epochs.

Before using the dataset available, the TTS-DB and OpenSLR-69 (Kjartansson et al.,
2020) have been reviewed. Specifically, all the examples ending in an ”r” character have
been checked by a Speech-to-Text model, and the ones not correctly recognized have been
discarded. As in the R-Error-Rate calculation, the language model of the STT model has
been disabled to avoid statistical corrections unrelated to the audio. This process has been
done for both the Basque and the Spanish datasets. The amount of sentences removed
corresponds to a 19.19% in the TTS-DBEU training split, matching with the ground truth
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Error Rate provided above, and none from the eval split. From the OpenSLR-76, 16.67%
and 66.67% sentences have been removed from the train and eval splits. As for the Spanish
datasets, from the TTS-DBES training split, 5.17% of the sentences have been removed,
and 5.13% from the eval split; from the ELRA-TC 49.32% and 49.27% of the sentences
have been removed from the training and eval splits respectively. Listening to some of
them, a few of them lack a pronunciation of the consonant, but most of them have an
appreciable consonant with low energy.

4.4.2 Evaluation and Result

The first piece of training took around 7 days to complete, and the second part took around
2 days, taking a total of 9 days to complete the full training.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU TTS-DBES

Ground truth 4.08±0.09 4.42±0.04 2.46±0.10 3.19±0.11 3.16±0.16
YourTTS 4.00±0.11 4.08±0.10 2.45±0.09
Exp.1 4.23±0.07 4.18±0.10 3.42±0.14 3.04±0.09
Exp.1+SCL 4.20±0.09 4.16±0.11 2.69±0.09 3.10±0.10
Exp.2 4.18±0.10 4.11±0.13 2.73±0.08 3.14±0.11 2.99±0.17
Exp.2+SCL 4.21±0.08 4.12±0.09 2.77±0.10 3.09±0.13 3.06±0.14
Exp.3 4.07±0.08 4.04±0.10 2.74±0.09 3.03±0.12 3.02±0.12
Exp.3+SCL 4.19±0.09 4.06±0.10 2.78±0.09 3.14±0.12 3.16±0.16
Exp.4 4.25±0.07 4.16±0.11 2.88±0.10 3.20±0.12 3.12±0.14
Exp.4+SCL 4.24±0.07 4.19±0.09 2.91±0.09 3.23±0.12 3.19±0.14

Table 18: Mean Opinion Score (MOS) approximation by VoiceMOS 2022 baseline SSL-
MOS model after 4th experiment.

In Table 18, we can see the MOS scores approximated by the VoiceMOS 2022 baseline
SSL-MOS model on all the experiments so far. The ground truth refers to the MOS
scores on audios from the actual dataset, and YourTTS refers to the model provided by
Coqui-TTS trained in English, Portuguese, and French used for transfer learning in the
first experiment. With the exception of the Portuguese language (MLS-PT), the best
scores are in the model in Experiment 4. Still, the differences are small and within the
confidence interval, but comparing the first with the latest experiment results, there are
some improvements. In out-of-domain languages (Portuguese, Basque, and Spanish), the
scores seem to remain below 4 all the time, even for the ground truth.

In Table 19, there are MOS scores provided by the model of one of the best participants
of the VoiceMOS 2022, the UTMOS-22. In this model, even the in-domain (English)
scores are below 4, but not in the ground truth. This may suggest that there is still
room for improvement. Similarly, the latest experiment got the best results, except for the
Portuguese language.

In Table 20, we can see another automatic naturalness MOS estimation, this time by
NISQA v1.0. In this case, Experiment 4 got the best scores in all the datasets, including
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Experiment VCTK LibriTTS MLS-PT TTS-DBEU TTS-DBES

Ground truth 4.03±0.05 4.31±0.03 2.79±0.08 3.59±0.10 3.62±0.15
YourTTS 3.63±0.08 3.70±0.09 2.62±0.10
Exp.1 3.80±0.07 3.79±0.07 3.35±0.10 3.13±0.08
Exp.1+SCL 3.79±0.08 3.78±0.09 2.78±0.10 3.18±0.09
Exp.2 3.76±0.08 3.79±0.10 2.91±0.09 3.26±0.10 3.13±0.18
Exp.2+SCL 3.80±0.09 3.74±0.07 2.94±0.09 3.20±0.11 3.18±0.15
Exp.3 3.70±0.06 3.71±0.09 3.02±0.09 3.18±0.10 3.13±.013
Exp.3+SCL 3.82±0.08 3.72±0.08 2.98±0.10 3.29±0.10 3.29±0.15
Exp.4 3.85±0.08 3.84±0.09 3.10±0.10 3.36±0.10 3.26±0.12
Exp.4+SCL 3.87±0.07 3.82±0.07 3.12±0.10 3.36±0.10 3.31±0.14

Table 19: Mean Opinion Score (MOS) approximation by UTMOS-22 model after 4th
experiment.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU TTS-DBES

Ground truth 3.75±0.16 3.98±0.14 3.31±0.18 4.11±0.12 3.62±0.28
YourTTS 3.37±0.10 3.53±0.12 3.19±0.16
Exp.1 3.43±0.11 3.47±0.13 3.13±0.13 3.66±0.15
Exp.1+SCL 3.42±0.10 3.43±0.13 3.12±0.13 3.65±0.15
Exp.2 3.50±0.11 3.54±0.13 3.31±0.14 3.67±0.15 3.40±0.24
Exp.2+SCL 3.60±0.11 3.58±0.13 3.23±0.14 3.72±0.14 3.45±0.21
Exp.3 3.40±0.12 3.40±0.13 3.27±0.17 3.49±0.15 3.26±0.20
Exp.3+SCL 3.50±0.12 3.63±0.13 3.39±0.15 3.74±0.16 3.44±0.23
Exp.4 3.61±0.15 3.66±0.14 3.42±0.15 3.65±0.15 3.56±0.25
Exp.4+SCL 3.74±0.11 3.73±0.14 3.46±0.13 3.83±0.15 3.55±0.30

Table 20: Mean Opinion Score (MOS) naturalness approximation by NISQA v1.0 after 4th
experiment.
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MLS-PT. Only the MLS-PT got scores better than the ground truth, which may have
some sense being a dataset trained by a non-professional with a cheap microphone, noise,
and a single speaker. The other datasets have better quality in general, and it should be
more difficult to reach the ground truth quality. We can compare the initial experiments
with the last one to see the progress more clearly.

Experiment VCTK LibriTTS MLS-PT TTS-DBEU TTS-DBES

Ground truth 0.824±0.018 0.932±0.008 0.901±0.015 0.900±0.007 0.884±0.014
YourTTS 0.845±0.009 0.858±0.011 0.803±0.010
Exp.1 0.849±0.009 0.862±0.014 0.813±0.012 0.873±0.023
Exp.1+SCL 0.845±0.010 0.868±0.013 0.817±0.012 0.879±0.027
Exp.2 0.843±0.010 0.860±0.012 0.813±0.013 0.882±0.021 0.871±0.028
Exp.2+SCL 0.847±0.011 0.861±0.012 0.811±0.012 0.877±0.029 0.871±0.025
Exp.3 0.847±0.008 0.862±0.011 0.807±0.013 0.875±0.026 0.877±0.024
Exp.3+SCL 0.855±0.008 0.866±0.011 0.807±0.015 0.883±0.023 0.879±0.029
Exp.4 0.853±0.007 0.860±0.011 0.814±0.013 0.880±0.022 0.886±0.018
Exp.4+SCL 0.855±0.007 0.860±0.012 0.811±0.013 0.874±0.027 0.890±0.021

Table 21: Speaker Encoder Cosine Similarity (SECS) after 4th experiment.

Regarding the speaker similarity, in Table 21 we can see a comparison of the Speaker
Encoder Cosine Similarity scores. In this case, there has not been an improvement. In
the VCTK English dataset, there has been some improvement, but in the others, the
improvement is not clear. This is reasonable, taking into account that we have trained for
longer, just the language part of the training. During that training, the model has been
focused on improving the audio quality and may have lost a little ability to use specific
speakers. Then, the last SCL training part was completed but not extended as the first
part. Maybe extending that second part of the training may alleviate the speaker-forgetting
problem. Still, the scores have little difference and are within the confidence interval. In
addition, for the Spanish language, the model has continued to improve a little.

To Finish, the R-Error-Rate of all the models can be checked in Table 22. This has
been performed by generating 1000 audios for each speaker with sentences ending in ”r”
and using a Speech-to-Text without a language model to transcribe them. The is no doubt
that the ”r”-at-the-end problem has been reduced considerably just by cleaning the dataset
a little and training for longer. Reaching a mean of 34.6% error rate for ”r” characters at
the end is more acceptable than 79%. Probably training it for longer, the problem may be
reduced even more. Nevertheless, the error rate for some speakers is still high, above 80%
for speakers M2 and F2. Another aspect to notice is that the CER of the latest experiments
has the best CER scores, with both parts of the experiment improving the ground truth
CER.

Something additional to keep in mind is that this training length has been almost
double length, and the scores have not improved much. This means that even though the
model can continue improving just by training for longer, the model has more problems
improving and progresses much slower. Therefore it may not be worth training longer to
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Experiment CER SpkM1 SpkF1 SpkM2 SpkF2 SpkM3 SpkF3 Mean
Ground truth 19.9% 19.1%
Exp.1 20.8% 80.9% 94.5% 93.9% 99.4% 84.7% 95.8% 79.1%
Exp.1+SCL 19.6% 80.0% 92.2% 90.5% 96.5% 91.1% 94.0% 76.0%
Exp.2 20.0% 63.5% 78.2% 80.8% 99.4% 41.8% 88.3% 61.1%
Exp.2+SCL 19.6% 59.9% 64.5% 76.8% 95.1% 50.9% 76.9% 55.9%
Exp.3 19.1% 48.3% 45.2% 90.7% 93.0% 43.0% 61.2% 44.1%
Exp.3+SCL 19.9% 43.9% 62.1% 86.4% 92.7% 58.9% 64.9% 50.3%
Exp.4 18.9% 30.7% 48.6% 87.2% 93.4% 31.1% 50.6% 41.0%
Exp.4+SCL 19.6% 35.7% 36.9% 84.5% 86.6% 31.7% 47.3% 34.6%

Table 22: ”R” at the end problem evaluation on TTS-DB dataset with the Basque language.
The ground truth row represents the Speech-to-Text overall performance in the dataset.
The Mean represents the mean between all the speakers, not just the 6 included here.

get a small improvement, depending on the case.
Summarizing in general, adding languages does not seem to make the model worse in

the previous languages. On the contrary, adding languages seems to improve the speech
quality of the model, even though it is just a little and not significant.

4.5 Human Evaluation

The subjective human evaluation was performed by 16 Basque and 24 Spanish native
speakers. For all the tests, both the speech naturalness and the Sim-MOS for speaker
similarity have been calculated. Additionally, each of the experiments has been performed
in two modalities: dataset speakers and zero-shot. First, the dataset speaker results will
be shown, and these results will be comparable with the results shown above for each
experiment. The zero-shot speakers have been performed using external speakers from the
ZureTTS project (Erro et al., 2014, 2015).

Experiment TTS-DBEU TTS-DBES

Ground truth 4.779±0.082 4.790±0.068
Exp.1+SCL 3.699±0.181
Exp.2+SCL 3.750±0.150 3.770±0.148
Exp.3+SCL 3.838±0.167 3.830±0.133
Exp.4+SCL 3.926±0.157 3.990±0.136

Table 23: Mean Opinion Score (MOS) on naturalness by Human Evaluators.

In Table 23, we can see the subjective naturalness of generated speech in Basque and
Spanish. In both cases, the scores improved as we completed each experiment, ending up
with scores of almost 4 in naturalness, but still far from the ground truth scores.

Similarly, in Table 24, the speaker similarity scores are shown. In this case, we have a
couple of scores above 4, so we can conclude that the speaker imitation is quite good. It is
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Experiment TTS-DBEU TTS-DBES

Ground truth 4.338±0.205 4.475±0.121
Exp.1+SCL 3.993±0.188
Exp.2+SCL 3.993±0.180 4.020±0.145
Exp.3+SCL 3.956±0.200 3.995±0.149
Exp.4+SCL 4.015±0.190 4.170±0.150

Table 24: Mean Opinion Score (MOS) on speaker similarity by Human Evaluators.

still not as good as the ground truth, but the difference is not so big as with naturalness.
Comparing each experiment, the model scores also improve as we do more training.

As for zero-shot speakers, in Table 25, the naturalness scores with out-of-domain speak-
ers are shown. Surprisingly, the difference between ground truth and the experiment scores
is similar. Therefore, using unknown speakers does not affect the quality of the speech pro-
duced.

Experiment TTS-DBEU TTS-DBES

Ground truth 4.740±0.122 4.795±0.091
Exp.1+SCL 3.604±0.213
Exp.2+SCL 3.500±0.208 3.330±0.189
Exp.3+SCL 3.750±0.218 3.473±0.188
Exp.4+SCL 3.850±0.223 3.964±0.167

Table 25: Mean Opinion Score (MOS) on naturalness by Human Evaluators with zero-shot
speakers.

As for speaker similarity with zero-shot, the scores are similar, and later experiments
seem to be better, as it is shown in Table 26. But in this case, for the Basque language,
Experiment 4 performed worse than Experiment 3. In the Spanish language, there is
much more progress between experiments, and the latest experiment score is almost the
same as in-domain scores. Overall, there is a positive trend as the training length is
extended. Otherwise, the scores here are worse than the ones with dataset speakers in
Table 24, meaning that it is more challenging for the model to learn to generate speech
with unknown speakers.

Altogether, with the human evaluation results, we can reach the same conclusion as
with automatic evaluation: the results improve as we keep adding datasets and training
for longer. This may imply that these models are undertrained and better scores can be
reached just by adding more training time, as we have seen with Experiment 4. Notwith-
standing, these evaluation has been completed with a limited number of evaluators. This
can be appreciated in the big confidence interval of the results, meaning that there is high
variability in the scores.
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Experiment TTS-DBEU TTS-DBES

Ground truth 4.708±0.128 4.562±0.177
Exp.1+SCL 3.354±0.228
Exp.2+SCL 3.375±0.200 3.455±0.210
Exp.3+SCL 3.396±0.211 3.750±0.196
Exp.4+SCL 3.302±0.220 4.009±0.173

Table 26: Mean Opinion Score (MOS) on speaker similarity by Human Evaluators with
zero-shot speakers.

4.6 Discarded Experiments

Before deciding to do Experiment 4, we did some tests with other experiments. We hypoth-
esized that some languages, like French, might influence the ”r” character pronunciation in
Spanish. We also found some recording examples where the pronunciation of the ”r” at the
end was not very clear. So we designed a set of three experiments, done in the following
order:

1. Experiment 1.1 removing French: This consisted in training the model on Experi-
ment 1, using the final model provided by Coqui-TTS for transfer learning, which
had already been trained on a French dataset. However, during the training, we
intentionally removed the French dataset in order for the model to forget that lan-
guage. Then, as in Experiment 1, we trained the model on the Basque dataset for
it to learn the language. The setup for the training is exactly the same as for the
original Experiment 1.

2. Experiment 1.2 without French: Similar to the previous approach, but doing transfer
learning from a model that has not been trained on a French dataset before. For
that, we did transfer learning from YourTTS model Experiment 2 (Casanova et al.,
2022b). The setup for the training is again the same as for the original Experiment
1.

3. Experiment 1.3 cleaning up the dataset : This reproduces Experiment 1, but cleaning
up the Basque dataset from recordings with a not-so-clean ”r” pronunciation at the
end. This is the cleaned dataset used for Experiment 4: check Section 4.4 for the
details of how the filtering has been performed. Again the training was performed
maintaining the same setup as for Experiment 1.

In table 27, we can see the R-Error-Rate of the discarded models compared with the
final Experiment 1 and our latest experiment, Experiment 4. We did this experiment to
decide how to solve the ”R”-at-the-end problem. There is no doubt that removing the
French dataset helped the most (Exp.1.1), even more than training on a model that has
not been trained before with the French language (Exp.1.2). Training on a cleaned-up
dataset, removing sentences with unclear pronunciations of the consonant also helped.
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Experiment SpkM1 SpkF1 SpkM2 SpkF2 SpkM3 SpkF3 Mean
Ground truth 19.1%
Exp.1 80.9% 94.5% 93.9% 99.4% 84.7% 95.8% 79.1%
Exp.1.1 61.8% 71.9% 92.6% 95.4% 40.3% 83.0% 66.0%
Exp.1.2 65.3% 87.5% 83.5% 96.4% 71.0% 86.0% 75.9%
Exp.1.3 73.0% 89.7% 88.6% 98.7% 71.7% 95.3% 72.6%
Exp.4+SCL 35.7% 36.9% 84.5% 86.6% 31.7% 47.3% 34.6%

Table 27: R-Error-Rate scores on TTS-DB dataset with the Basque language on the dis-
carded experiments, comparing them with the first and latest experiments of our final
models.

Unfortunately, the problem did not disappear completely, not even in Experiment 1.2,
where the model had not seen the French language before. Additionally, all the scores
are still too high: 66% is the best-reached score, being the problem far from disappearing.
So we discarded the idea of French being the primary source of the problem, considering
the possibility of being a limitation of the model. The outcome obtained here led us to
decide to extend the training, as explained in Experiment 4, with the cleaned version of the
dataset and see if that forced the model to continue learning. The idea of extending the last
experiment was for the dataset to include examples where a Basque-style pronunciation of
”r” was correct and emphasize learning the new languages added here, as Basque, Spanish,
Galician, and Catalan all of them use those phones frequently. This has the additional
benefit of not losing the ability to synthesize speech with the French language.

4.7 Chapter Summary

In this chapter, we have described all the experiments performed to train the Text-to-
Speech model in detail. We started doing transfer learning from a multi-language model
pre-trained in English, Portuguese, and French. Our first experiment added the Basque
language, the second experiment the Spanish language, the third experiment two languages,
Catalan and Galician, and the latest experiment extended the training for the model to
continue improving. We also evaluated the model in each of the steps along the way. We
showed that even though we continue adding languages, there is no proof of the model
finding difficulties learning or decreasing the performance on the previous languages. In-
deed, there are signs that indicate that, as we continue adding languages and extending
the training time, the model continues improving slightly.
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5 Application

In this chapter, the creation of a Speech-to-Speech model for machine translation with
voice conversion will be described. In other words, this describes a deliverable application
that can translate your voice to another language. The main focus of the research has been
to develop a good multilingual Text-to-Speech model. Along the way, the need to have
good Speech-to-Text transcription models has arisen in order to be able to evaluate and
debug some problems of the created models. To take advantage of the created models, a
small prototype has been created that brings together all the models built here plus others
obtained from the community.

The prototype first uses Speech-to-Text models to transcribe audio taken as input.
Some of these models have been obtained from the community, and two of them have
been created in-house. Subsequently, the model uses Machine Translation to convert the
transcribed text to the target language. Machine Translation models are out of the scope
of this research, so they have been used in inference without training. Finally, the Text-
to-Speech model is used to synthesize an output waveform with the new language. All
the models involved here support the same languages: English, Basque, Spanish, Catalan,
Galician, Portuguese, and French. The inner details of each of the models are described
below.

5.1 Text-to-Speech Module

The Text-to-Speech module includes all the models developed in the different experiments
performed during this research, which are the following:

• Experiment 1 EN-PT-FR-EU: English, Portuguese, French, and Basque support.

• Experiment 1 EN-PT-FR-EU SCL: English, Portuguese, French, and Basque support
focused on speaker similarity.

• Experiment 2 EN-PT-FR-EU-ES: All of the languages above, plus Spanish.

• Experiment 2 EN-PT-FR-EU-ES SCL: All of the languages above, plus Spanish, fo-
cused on speaker similarity.

• Experiment 3 EN-PT-FR-EU-ES-CA-GL: All of the languages above, plus Catalan
and Galician.

• Experiment 3 EN-PT-FR-EU-ES-CA-GL SCL: All of the languages above, plus Cata-
lan and Galician, focused on speaker similarity.

• Experiment 4 EN-PT-FR-EU-ES-CA-GL: All of the languages above trained for longer.

• Experiment 4 EN-PT-FR-EU-ES-CA-GL SCL: All of the languages above, training for
longer, including speaker similarity loss.
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This module supports voice conversion from an input audio file for zero-shot or using
any speaker from the dataset. This audio input file, when provided, is also normalized
following the techniques explained in Section 3.2.3. Furthermore, the text passed to the
TTS modules is pre-processed using the text-normalizer package described in section 3.2.2.

5.2 Machine Translation Module

The Machine Translation inference module, by default, uses multiple Opus-MT models
from the University of Helsinki and CSC (Tiedemann et al., 2022), with the alternative of
using Google Translate API mainly for testing.

The Opus-MT inference technique uses one or multiple Opus-MT models to translate
between the source language to the target language: if it exists a model for direct transla-
tion, for example, from Portuguese to Spanish, it uses it. If such a model does not exist,
it translates first to English and then from English to the target language. Moreover, if
there is no direct lang-to-English or English-to-lang translation model and it needs to be
used, it uses the multilingual opus-mt-mul-en or opus-mt-en-mul models, respectively.

(a) Lang-to-English models languages. (b) Lang-to-English models BLEU scores.

Figure 23: Machine Translation models to translate from multiple languages to English.

The opus-MT project (Tiedemann et al., 2022) trained various multilingual machine
translation models with different language support. In Figure 23, we can see the differences
between multiple languages to English multilingual models: the number of languages sup-
ported and their BLEU score. The BLEU score is a metric to evaluate machine-translated
text: a value of 100 is the best score, and 0 is the worst. Similarly, in Figure 24, the
differences between multilingual models to translate from English to multiple languages
can be seen. In both cases, the opus-mt-mul-en and opus-mt-en-mul are the ones to
support more languages. At the same time, their score is not the best, but there is not so
much difference from the top scoring models.
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(a) English-to-Lang models languages. (b) English-to-Lang models BLEU scores.

Figure 24: Machine Translation models to translate from English to multiple languages.

For our application, we decided to use the mul models for simplicity. In the future, a
better algorithm can be designed that chooses the model supporting the language with the
best score. Another possibility is to fine-tune the models provided with more and better
quality text on the languages required. All this has been left for a future project.

5.3 Speech-to-Text Module

For the Speech-to-Text, we decided to use multiple Deep Speech models (Hannun et al.,
2014a) because it is a lightweight and well-known architecture, with multiple implementa-
tions and models shared by other researchers in different languages.

In Figure 25, we can see a simplified diagram of the Deep Speech model created by the
Baidu research team. The system is formed by six layers, having Mel-frequency cepstral
coefficients (MFCC) as input and text as output. The first three layers are formed by
Equation 15, with simple rectified-linear activation functions (ReLU) and its own weight
matrix (W l) and bias (bl). The fourth layer is a bidirectional recurrent neural network:
specifically, an LSTM in Mozilla’s implementation that is used here. The fifth layer is
another ReLU layer but takes both the forward and backward units of the LSTM as input.
The last layer is a softmax function that gives the predicted character probabilities for
each time step.

hl
t = ReLU(W lhl−1

t + bl) (15)

Besides, often an n-gram Language Model (LM) is attached to the output to add word
knowledge and improve the neural model character output. This language model is usually
trained on a huge text corpus beforehand. Equation 16 is used to find a balance between
the recurrent neural network probabilities output, the language model statistics, and the
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Figure 25: Deep Speech Speech-to-Text model architecture.
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length of the sentence. PNN ·) referes to the neural network probability and PLM(·) to the
language model probability; x is the audio features input and o the text candidate output.
The α and β hyperparameters must be adjusted for each language and trained model. This
equation is maximized using the beam search heuristic algorithm (Hannun et al., 2014b)
that searches for a good-enough solution by expanding the most promising candidates.

Q(o) = log(PNN(o|x) + αPLM(o)) + β word count(o) (16)

Table 28 lists all the Deep Speech models used by the application developed here. The
Basque and Galician STT models have been trained for this project, and the detailed
process is described below. The Basque Deep Speech model was trained to improve the
currently available model: we needed a more accurate model to evaluate our Text-to-Speech
models. The Galician model was not available before, so it was trained from scratch. The
English model was trained by the Coqui Team 10, the Portuguese model by Francis Tyers
and the Inclusive Technology for Marginalised Languages (ITML) 11, the French model by
the Common Voice FR project and revived by Waser Technologie12, the Spanish model
by the by Danber and released under the Jaco-Assistant project13, and the Catalan model
by Ciaran O’Reilly 14. During inference, when using theses models in the application, the
speech signal is normalized as explained in Section 3.2.3 before passing it to the specific
STT model.

Language Version Creator CER WER
English v1.0.0-huge-vocab Coqui 4.50% / 13.60% 1.60% / 6.40%
Portuguese v0.1.1 ITML 73.20% 26.70%
French v0.9 commonvoice-fr 31.50% 15.20%
Basque v0.1.8 Xabier 10.65% 4.21%
Spanish v0.0.1 Jaco-Assistant 16.50% 7.60%
Galician v0.1.3 Xabier 16.38% 6.83%
Catalan v0.14.0 Ciaran O’Reilly 13.29% -

Table 28: Deep Speech models used in this project for user speech transcription and their
scores in the Common Voice dataset test split. The Basque and Galician models have been
trained in this project. The English model has been tested in Librispeech clean and other
splits instead of Common Voice.

The Basque and Galician models have been trained following Francis M. Tyers and Josh
Meyer’s approach to training Speech-to-Text models for minority languages with scarce
resources (Tyers and Meyer, 2021). As audio and transcriptions training data, different
versions of the Common Voice dataset (Ardila et al., 2019) have been used. In table 29,

10https://coqui.ai/english/coqui/v1.0.0-huge-vocab
11https://coqui.ai/portuguese/itml/v0.1.1
12https://coqui.ai/french/commonvoice-fr/v0.9
13https://coqui.ai/spanish/jaco-assistant/v0.0.1
14https://coqui.ai/catalan/ccoreilly/v0.14.0
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we can see the different datasets used here for training. Something to take into account is
that the Galician dataset does not have many speakers, so it has been more challenging to
train.

Language Autonym Locale CV Training Audio Clips Speakers |V|
Basque Euskara eu 6.1 9:53:04 10:51:34 7,505 53 28
Basque Euskara eu 12.0 - 15:50:01 10,905 64 28
Galician Galego gl 10.0 2:25:07 4:51:08 3,403 6 30
Galician Galego gl 12.0 3:17:12 6:17:56 5,008 8 30

Table 29: Datasets used to train the Speech-to-Text models. The Training refers to the
time required to train the initial models without counting LM tweaks, and |V| refers to
the number of symbols in the alphabet, defining the size of the softmax layer.

All the different versions of the Speech-to-Text models trained here can be downloaded
from the Aholab team web server 15.

5.3.1 Basque STT Model

The Basque STT model has been trained, continuing Francis M. Tyer’s previous work
(Tyers and Meyer, 2021). For the hyperparameters, we started from their best results:
learning rate of 0.001, dropout of 0.2, SpecAugment enabled (Park et al., 2019), and for
100 epochs. SpecAugment is a simple data augmentation method frequently used in speech
recognition tasks where the blocks of frequency channels and time steps are masked in the
input features. The starting LM alpha and beta hyperparameters were 1.3388886030877378
and 4.8289231615211 in the beginning. This model was used not only for the prototype
but also to calculate the R-Error-Rate in Section 3.4.

In Table 30, we can see the different versions trained and their scores. For the neuronal
part of the Deep Speech model, the Common Voice versions 6.1 and 12.0 has been used.
In versions v0.1.1 and v0.1.2, we just tried to reproduce previous results (Tyers and
Meyer, 2021) but updating the underlying CUDA toolkit from version 11 to version 12:
this improved the model slightly. The Language Model was trained using Common Voice
transcriptions (Ardila et al., 2019) and the Opus (Tiedemann, 2012) corpora with modified
Kneser-Ney smoothing (Heafield, 2011; Heafield et al., 2013). The version v0.1.3 was an
improvement of the Language model by adding a recent Wikipedia dump: this reduced
the model errors considerably. In version v0.1.4, we optimized the language model by
searching for better alpha and beta hyperparameters during 24 hours using Optuna hyper-
parameter optimization framework (Akiba et al., 2019), producing a small improvement in
the final model. For version v0.1.5, we added the EusCrawl corpus (Artetxe et al., 2022)
to the language model, improving the model a little more but removing the Wikipedia cor-
pus. This is because the EusCrawl corpus already includes the Wikipedia corpus, avoiding
unnecessary data duplicity, which can extend the training without much improvement.

15https://aholab.ehu.eus/∼xzuazo/models/
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Version CV LM Corpora LM Size WER CER
v0.1.1 6.1 - - 68.55% 15.60%
v0.1.2 6.1 CV, Opus 234M 17.09% 5.99%
v0.1.3 6.1 CV, Opus, Wikipedia 309M 15.87% 5.63%
v0.1.4 6.1 CV, Opus, Wikipedia 309M 14.53% 5.28%
v0.1.5 6.1 CV, Opus, EusCrawl 590M 14.31% 5.23%
v0.1.6 6.1 CV, Opus, Wikipedia, EusCrawl 638M 14.12% 5.18%
v0.1.7 12.0 CV, Opus, Wikipedia, EusCrawl 638M 12.00% 4.48%
v0.1.8 12.0 CV, Opus, Wikipedia, EusCrawl 638M 10.65% 4.21%

Table 30: Basque Deep Speech model versions and their Character Error Rate (CER) and
Word Error Rate (WER) reported on the test set. Model versions v0.1.1 and v0.1.2 were
previously trained by Francis M. Tyers (Tyers and Meyer, 2021) in CUDA 11, here they
were retrained on CUDA 12: this made the scores improve slightly. For model version
v0.1.4, LM optimization was done for 24 hours. For model version v0.1.8, full LM opti-
mization was performed for 2400 trials.

On version v0.1.6, we used both EusCrawl and the latest Wikipedia dump to check the
differences. The model improved slightly, but not much. For version v0.1.7, we update
the Common Voice version from 6.1 to 12.0. As we can see, updating the Common Voice
dataset version leads to a great score. However, between Common Voice versions, there is
no guarantee to maintain the same splits, and they are not guaranteed to be comparable.
In version v0.1.8, we just optimized the language model, but this time for 2400 trials,
which took around 24 days to complete. The best alpha and beta values found in the
latest version of the model were 1.4428895547940739 and 4.999123396032508, respectively,
reducing the final WER value by 1.35%. Optimizing the language model takes time but
can reduce the final scores even more without the need to have a bigger dataset or create
a more convoluted model.

Anyway, in these final transcription models, the results are good enough to get an idea
of the approximate error rates of each of the Text-to-Speech models generated previously.
As we can see, updating the Common Voice dataset versions seems to reduce the errors
significantly, making clear the need to increase the audio dataset of languages with few
resources. However, between Common Voice versions, there is no guarantee to maintain
the same splits, and they are not guaranteed to be comparable. But the results shown here
are good enough to get an idea of the approximate error rates of each model individually.

Version CV LM Corpora LM Size WER CER
v0.1.7-OnlyWiki 12.0 CV, Wikipedia 70M 18.66% 6.26%
v0.1.7-OnlyEusCrawl 12.0 CV, EusCrawl 344M 15.76% 5.54%

Table 31: Basque Deep Speech model versions using only the Wikipedia or the EusCrawl
corpus for the language model.
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As a side dataset ablation test, we also re-trained the latest version of the model’s
language model, keeping only the Common Voice transcriptions and Wikipedia for the
first test and the EusCrawl for the second test. The results can be seen in Table 31.
This experiment was performed to make a fair comparison between Wikipedia dump and
EusCrawl as a corpus to train the language model. Considering that these models should
have almost no redundancy in the data, we can use their results to compare the quality
of both datasets fairly. Starting from the same Deep Speech neural model, it is clear that
the EusCrawl dataset achieved better scores in exchange for increasing the language model
size. No doubt, the EusCrawl brings more linguistic richness to the model and is a good
source for training language models.

5.3.2 Galician STT Model

For the Galician STT model, we did not find any previously trained Deep Speech model. To
tackle this difficulty, we did a first hyperparameter sweep (Tyers and Meyer, 2021) process
consisting of 18 short experiments, testing the following parameter values: learning rate in
the range 0.001, 0.0001, 0.00001, values for dropout in the range 0.2, 0.4, 0.6 and whether to
enable SpecAugment (Park et al., 2019). The best scoring hyperparameters were: learning
rate of 0.00001, dropout of 0.2, and SpecAugment disabled.

Version CV LM Corpora LM Size WER CER
v0.1.0 10.0 CV, Opus, Wikipedia 398M 21.90% 9.10%
v0.1.1 12.0 CV, Opus, Wikipedia 473M 18.37% 7.66%
v0.1.2 12.0 CV, Opus, Wikipedia 473M 16.42% 6.85%
v0.1.3 12.0 CV, Opus, Wikipedia, SLIGalWeb 527M 16.38% 6.83%

Table 32: Galician Deep Speech model versions and their Character Error Rate (CER) and
Word Error Rate (WER) reported on the test set. Model version v0.1.2 and the following
were trained with SpecAugment enabled.

In table 32, we can see the different experiments performed. In the first version, v0.1.0,
we trained it in Common Voice version 10.0 for the Deep Speech neural model. For the
language model, Common Voice transcriptions, Opus, and Wikipedia were used. For ver-
sion v0.1.1, we updated the Common Voice dataset from version 10 to version 12, which
brought some improvement to the model. Then, in version v0.1.2, we show the model
started to have some overfitting after the update, so we enabled SpecAugment again, im-
proving the results even more. In Figure 26, both the training plots can be seen, with and
without overfitting.

Last but not least, we added the SLI GalWeb corpus (Agerri et al., 2018), composed
of crawled texts from various domains by the IXA pipes tools (Agerri et al., 2014). This
last corpus improved the scores a little more, getting the best model of all.

As a final note, there is an evident lack of public resources for the Galician language both
in audio and in text corpora, and this made the model not reach such good results. Still,
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(a) SpecAugment off (b) SpecAugment on

Figure 26: Galician model versions v0.1.1 and v0.1.2 trained first without and then
with SpechAugment, probing that enabling it fixed the overfitting problem as the audio
dataset size increased. The blue lines refer to the training loss, and the orange lines to the
validation loss.

with the limited resources available, the results reached can be considered good enough for
some applications, such as the prototype presented here.

5.4 Online Web Interface

The final prototype has a modular approach, having a separate module for each task.
The main idea is to be reusable for future models of Text-to-Speech, Machine Translation,
Speech-to-Text, or even End2End models. The web user interface has been created using
the Gradio Framework16 following this lowly-coupled methodology and has been tested
to work both on desktop and mobile devices. In addition, the different tasks supported
can be independently enabled or disabled. The prototype has been deployed in Aholab
research group servers with the Speech-to-Speech Translation module enabled and can be
thoroughly tested online 17.

In Image 27, the S2ST web interface can be appreciated. The user records a sentence
and selects the source and the target language. After pushing the submit button, the
speech will be translated into another language. By default, the speaker voice will be
conserved ([SELF]), but there is a drop-down menu with a list of speakers to choose from
if preferred. Additionally, it also has options to select other synthesis models to try, which
for now include the different experiments carried out here. Machine translation models
include the Opus-MT models, but there is an option to use the Google Translate API too.

16https://gradio.app/
17https://aholab.ehu.eus/S2S/
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Figure 27: Speech-to-Speech Translation model prototype web interface.
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5.5 Chapter Summary

In this chapter, we have seen an example of application development using our Text-to-
Speech models. The prototype described here does Speech-to-Speech Translation with voice
conversion. The model is structured by attaching three models in cascade: Speech-to-Text
module, Machine Translation module, and Text-to-Speech module. For the Speech-to-Text
module, we used Deep Speech models, one for each language. For that, we trained two of
them in-house, the Basque and Galician models, and the training process has been detailed
here. Next, Machine Translation models were used in inference together, choosing between
different models to make inferences from depending on the source and target language.
Finally, all the models were put together in a web user interface.
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6 Discussion and Future Work

In this research project, we have worked with multiple related speech and language process-
ing technologies, using Text-to-Speech, Speech-to-Text, and Machine Translation models,
developing and evaluating some of them on the way. Here we will summarize some of the
results and try to add some deeper insights into the quality of the trained models. First,
we are going to review the outcome of each of the experiments. Then, we are going to
mention some limitations of the work here. Finally, we will propose possible future work to
alleviate the current weaknesses and continue improving the multilingual Text-to-Speech
models presented.

6.1 Discussion

In this work, we started from a TTS multilingual model supporting three languages and
added Spanish, Basque, Catalan, and Galician support to it. We did this step by step:
adding Basque support first, then Spanish, and finally Catalan and Galician. Initially,
we were interested in whether incorporating more languages into the multilingual model
decreases its performance or if the model found more difficulties in learning the new lan-
guages as we progressed through the experiments. In Chapter 4, we saw the evaluation
results of each of the steps in detail. We evaluated each model from the speech naturalness
and speaker similarity points of view using various evaluation methods. In addition, we
found that some of the models have difficulties synthesizing the ”r” character at the end
of the sentences, so we also evaluated the R-Error-Rate metric.

As already explained, in the Experiment 1 described in Section 4.1, we added Basque
support to the model and compared it with the original model, only supporting English,
Portuguese, and French. Checking the naturalness of the language, our model improved
the scores from the original model in most of the evaluated metrics. The improvement was
minute but generalized along all the tests. The speaker similarity scores got better results
than the original YourTTS, even better than the ground truth for some of the datasets
tested. The general result of the model was very positive.

Unfortunately, the RER score was very high: the model had problems pronouncing
sentences ending in the ”r” character. We also tested the rest of the characters from the
Basque alphabet using a Text-to-Text speech model, and this problem does not seem to be
present or is very infrequent in sentences with other endings. Anyway, these models have
trouble synthesizing the voiced alveolar tap [R] and the voiced alveolar trill [r] phones from
Basque. The reason for this limitation has not been found, but other phones from other
languages not very present in English could also cause complications. For the problem in
Basque, we created the R-Error-Rate metric to trace this problem along the rest of the
trained models. For this first experiment, the RER at the end of the sentences was 76%.

In Experiment 2, presented in Section 4.2, we just added another language: Spanish.
One of the datasets used to train this model was shared with the previous experiment.
This meant that only one new speaker was added to the training dataset; the others
were already learned while learning the Basque language. The naturalness scores of this
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model also got a modest improvement over the previous model. The improvement was
not completely clear because the differences were within the statistical variance intervals.
But a slight generalized improvement can certainly be appreciated across all the languages
tested. Nonetheless, the improvement in speaker similarity was not clear for the English
and Portuguese languages. This may be due to the new dataset adding only one new
speaker, meaning that to obtain better speaker similarity results, adding more speakers
is recommended. On the other hand, the R-Error-Rate scores improved a lot, suggesting
that adding datasets and training for longer can reduce the problem. Still, the error rate
was relatively high, around 56%. This training confirmed that adding languages is not
worsening the quality of the model, nor is it finding it difficult to learn new languages.

As for Experiment 3, detailed in Section 4.3, we added two languages instead of one to
see if the model can learn multiple languages simultaneously. The languages were Galician
and Catalan, which contain common linguistic roots so as not to stress the problem too
much. The datasets added for these languages were from a different source, adding around
80 new speakers to the dataset. The naturalness scores did not improve for the English
dataset. For the Basque and Spanish languages, it seems to be a slight improvement, but
it is not as clear as in the previous experiments. With respect to the speaker similarity, it
was a little better than before. However, the progress is not huge, meaning that there is
not so much room for improvement. The RER continued decreasing, reaching an error rate
of around 44-50%: the reduction was smaller than before. In general, the improvement
of the models as we keep adding languages seems to decrease, but there are no signals of
model deterioration in any sense. In other words, the models do not seem to encounter
any difficulty in learning new languages and speakers.

With regard to Experiment 4, described in Section 4.4, we did not add any new language
this time. We just continued training in the same languages for longer. The purpose of
this piece of training was to see if the scores can continue improving just by training and
if the R-Error-Rate is reduced. This model was left training for a little longer than the
previous experiments, about two days more. Checking the speech quality, the model got
the best scores, comparing it with the rest of the experiments. The improvement between
each of the experiments is not so clear, but by checking the whole progress, the models
seem to improve little by little and achieve better performance over time. The speaker
quality did not improve here, which may make some sense because we did not add any new
speakers. Therefore, the addition of new voices is a requirement to improve the model on
speaker similarity. As for the R-Error-Rate, it was reduced to 35%. Not bad, considering
that we had an R-Error-Rate of 76% in the first experiment and the ground truth error
rate is around 19%.

After finishing all the experiments, we also performed various human evaluation tests
to judge the different experiments from a subjective point of view. All in all, the same
conclusions can be drawn from the human MOS as from the automatic tests: As we continue
to train the models and add languages, the models do not degrade and seem to improve.
In these tests, we also performed zero-shot evaluation using speakers from an external
dataset not previously seen by the model. In this zero-shot scenario, the naturalness of
the speech produced is not affected, but the speaker conversion is more difficult for the
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model to perform, obtaining slightly worse scores. Nevertheless, the score differences fall
between the confidence interval, so the difference cannot be considered significant on our
tests. Hence, we can conclude that the created Text-to-Speech models are appropriate for
use in real-life scenarios with any speaker’s voice.

To summarize, as we keep adding new datasets with new languages and speakers, the
model not only does learn those new languages and speakers but also gets higher scores
and produces better results in general. We also found that as we continued training the
model, the improvements were smaller and more challenging.

6.2 Limitations

The ”r” at the end problem gets better as we progress in the experiments and extend
the training, but it does not disappear completely. This indicates that this new model
may have problems synthesizing some phones that are not present in the most common
languages used to train Text-to-Speech models.

For the evaluation systems, we used different models that approximate speech natural-
ness mean opinion score values. This metric is usually performed by human beings and is
entirely subjective. We are unsure about the trustfulness of these scores produced auto-
matically by deep neural models. Mainly because these MOS models are frequently trained
just in the majority languages like English; so using them with out-of-domain languages,
their scores may not accurately reflect reality. A better approach is to use a big crowd
to score the audio files, but this is expensive and requires time. In any case, unlike in
other deep learning fields, in speech synthesis, there is a clear lack of objective metrics to
evaluate the quality of the generated speech.

6.3 Future Work

After successfully training a multilingual Text-to-Speech model step by step that supports
English, Basque, Spanish, and other languages, the next steps may be to improve the
current model or add more languages support. There is no doubt that to achieve both
of those things, having good resources is a must. Consequently, creating more and better
datasets for the languages involved here can make the model become better, and creating
resources for other languages can help in adding new language support. As it is widely
known, speech resources with parallel audio and transcriptions are abundant in English but
not so much in other languages. Especially for minor languages like Basque and Galician,
we found a lot of problems in finding good resources and datasets. Without the resources
shared by the Aholab team, this would have been much more complicated, if not impossible.

With respect to the specific experiment completed here, more model hyperparameter
tuning may help the model improve even more. Also, trying different strategies could help,
like adding more languages at the same time, training for longer, or increasing the batch
size, which was reduced here due to hardware constraints. The latter is important for the
model attention modules to train correctly and achieve better results.
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Another possible area of research is the creation of better evaluation techniques. As
dictated above, the current automatic naturalness and speaker similarity metrics may not
reflect speech real quality. Another common approach is to use Speech-to-Text models
to evaluate Text-to-Speech models, something similar to what we did to calculate the
R-Error-Rate previously. That can be an improvement, but no doubt more research in
this field is needed to find ways and develop methodologies to better asses other linguistic
features of generated speech, such as sparsity, intelligibility, duration, prosody, and so on.
Closely related to this, the model presented here has speaker conversion. This has only
been slightly tested with human evaluation, as it was not the focus of the research, but
doing a more profound zero-shot speaker evaluation is another pending task for the future.

Last but not least, with respect to the Speech-to-Speech Translation prototype created,
there is a lot of work pending, especially for the Speech-to-Text transcription module and
the Machine Translation part. The STT systems used here are Deep Speech (Hannun
et al., 2014a) models; these are thoroughly tested, lightweight architectures but slightly
outdated models. It might be interesting to try more recent audio transcription models like
QuartzNet (Kriman et al., 2019) or Conformers (Gulati et al., 2020), which, although they
are somewhat more complicate to create and train, usually give better results. Related
to this, it would be interesting to evaluate the S2ST model as a whole too. To evaluate
translation speech models, there exist solutions to generate text-based metrics using in-
termediate ASR models, like ASR-SENTBLEU (Jia et al., 2019) and ASR-COMET (Rei
et al., 2020). There also exist some recent models trained on human quality scores, but
there is an evident shortage of real human metric datasets, so these models have a hard
time doing well (Rei et al., 2020). Another alternative would be to use recent text-free
metric evaluation models like BLASTER (Chen et al., 2022).

6.4 Contributions of the Thesis

During the research carried out here, multiple Text-to-Speech multilingual models have
been developed and evaluated. As a final result, there is a successfully trained speech syn-
thesizer supporting English, Basque, Spanish, Portuguese, French, Catalan, and Galician.
This model can be used for future research, projects, and applications, which include a
large number of tasks and sectors. Along the way, multiple packages related to dataset
pre-processing and Speech-to-Text models have been shared with the team and the com-
munity, like the multilingual normalize-text pre-processing tool, the improved Basque STT
model, and we have released the first Deep Speech model trained on the Galician language.
At the same time, the full process has been documented here for others to replicate, im-
prove, or as a source of inspiration and ideas for other similar projects and research.

Additionally, a work-in-progress Speech-to-Speech Translation project has been started
that will continue to be developed; new, better models will be added as the state-of-the-art
advances and becomes more accessible, and new datasets will be created and shared.
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6.5 Summary and Conclusion

In this research, a new multilingual Text-to-Speech has been successfully developed, which
includes Basque, Spanish, and English, among others. The full training process included
dataset pre-processing, consequent model training in multiple steps, and an evaluation as
thoughtful as the available resources allowed, with everything documented along the way.
The obtained results suggest that not only does the model learn new languages, but it
also improves the quality of the previous models without showing any sign of degradation.
As it is expected, the final deliverable produced here can be reused for other projects or
continue being improved in the near future.

Generally speaking, taking into account the pace of change that the field of deep learning
is taking, there is potential growth in this and the coming years that will affect speech-
related models, including but not limited to speech synthesizers. The experiments carried
out here to generate a state-of-the-art model that knows how to synthesize minority lan-
guages can constitute a good starting point to get on the bandwagon of neural model
development in the field of speech. Additionally, this may help other medium-small size
teams to contribute with other models or carry out further research, covering more lan-
guages and cultures.

On the journey to create these models, opportunities have arisen to launch other
projects related to the field of speech and natural language processing, such as Speech-
to-Text, Machine Translation, and Speech-to-Speech Translation models.
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