CHAPTER

Angle Modulation

6.1

A continuous-wave (CW) sinusoidal signal can be varied by changing its amplitude
and its phase angle. Recalling Eq. (5.2), we write

@(t) = alr) cos [wt + (1)].

In Chapter 5 we kept y(t) constant and varied a(t) proportional to f(@). This intro-
duced the concept of amplitude modulation. Now we shall investigate the case in
which a(z) = A (a constant) and the phase angle y(¢) is varied in proportion to f(z).
This introduces the concept of angle modulation.
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The angle of a sinusoidal signal is described in terms of a frequency and/or a phase
angle. Before proceeding here, however, we must decide precisely what we mean
by the frequency of a sinusoid. If a sinusoid has a constant angular rate ,, then
we say that the frequency of the sinusoid is w, radians per second. But what happens
if the angular rate is not constant? It is helpful at this point to return to a phasor
representation.

The phasor representation of a constant-amplitude sinusoid is shown in Fig. 6.1.
This phasor has a magnitude A and a phase angle 6(¢). If 6(¢) increases linearly with
time [that is, 8(t) = wyt], we say that the phasor has an angular rate, or “frequency,”
of w, radians per second. If the angular rate is not constant, we can still write a rela-
tion between the instantaneous angular rate w(r) and 6(z):

o(t) = j’wi(fr)df + 6,. 6.1
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Figure 6.1 A general phasor
representation.
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EXAMPLE 6.1.1

Taking the derivative of both sides of Eq. (6.1), we have

wt) = e (6.2)
T.herefore we conclude that the instantaneous frequency of a sinusoidal signal is
given by the time derivative of its phase. Note that this definition agrees with our
usual concept of frequency when the phase is linear with time.

Solution

Determine the instantaneous frequency of the signal ¢(t) = A cos (107t + 7¢2).
6(t) = 10t + 712
do
w(t) = @ = 107 + 2mt = 27w(5 + 1)

The frequency of ¢(r) is 5 Hz at ¢+ = 0 and increases linearly at a rate of 1 Hz per
second. Thus a quadratic phase shift gives a linear frequency dependence.

DRILL PROBLEM 6.1.1

Determine the instantaneous frequency of the following signal at ¢ = 0: (1) = 5 cos
(10¢ + sin 5¢).

ANSWER: 15 rad/sec.

Thg ggncept of instantaneous frequency now permits us to describe two obvious
pos.51b111tles for angle modulation (there are many more). If the phase angle 6(r) is
varied linearly with the input signal f(¢), we can write

0(t) = ot + k,f(t) + 6, (6.3)

where o, k,, 0, are constants. Because the phase is linearly related to f(z), this type
of aqgle modulation is called phase modulation (PM). The instantaneous frequency
of this phase-modulated signal is

SO df
W, = o @it kpzt. (6.4)

Another possibility is to make the instantaneous frequency proportional to the in-
put signal,

o, = o, + kf(t), (6.5)
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where w,, k; are constants. Because the frequency is linearly related to f(z), this type
of angle modulation is called frequency modulation (FM). The phase angle of this
frequency-modulated signal is

o(t) = j w(t)dr = wt + J kf(rydr + 6. (6.6)
0 0

A comparison of Egs. (6.3)—(6.6) shows that PM and FM are closely related. The
phase angle of the PM carrier signal is proportional to the modulating signal. But in
FM the instantancous frequency of the carrier signal is proportional to the modulating
signal, so that the phase angle of the carrier is proportional to the integral of the mod-
ulating signal. Therefore, if the modulating signal f(r) is first integrated and then
used to phase modulate a carrier, the result is a signal that is frequency-modulated.
Figure 6.2 is an illustration of FM and PM waveforms for given f(z).
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Figure 6.2 Fxamples of frequency and phase modulation.

Because frequency and phase modulation are so closely related, any variation in
phase will necessarily result in a variation in frequency and vice versa. The essential
difference between FM and PM is the nature of the dependency on the modulating
signal. Although we shall discuss FM in more detail, our discussion is also valid for
PM with only minor differences and these are pointed out in a later section.

In the case of AM signals, there was always a one-to-one correspondence between
the modulated signal and the modulating signal. When this condition holds, the
modulation is said to be linear.' For PM and FM this is not always true, however, as
can be seen from the following reasoning.

¥ More formally, if f(¢) is the modulatirig signal and ¢(¢) is the modulated signal, the modula-
tion is linear if dé/df is independent of f().
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6.2

A general PM (or FM, with the appropriate modifications) signal can be repre-
sented by (note our return to complex notation)’

Oem(t) = AeV = pglwcrttolg pf) 6.7

Using a series expansion for the exponential modulation factor in Eq. (6.7), we have
ut j(wet+ ) . 1 2 02 o
Pemlf) = A" [1 TS} = S f0) ~ g ) + ] (6.8)

From this result we conclude that, unless |k,f(z)] < 1, angle modulation— in this
ca.se.: PM —is not linear. Therefore we can expect that, in general, the sidebands
arising in angle modulation will not obey the principle of superposition. An analysis
of spectra, etc., will have to be carried out choosing a particular waveform. When
confronted by this choice, we shall use the sinusoidal waveform unless otherwise
specified.

NARROWBAND FM

The linear condition in Eq. (6.8) maintains a linear modulation for FM and this ap-
pears to be a good place to begin. To lay the groundwork for the nonlinear modula-
tion case we shall use a sinusoidal modulating signal. To be specific, let

St) = a cos w,t. (6.9)
Because we are dealing with FM [cf. Eq. (6.5)],
w; = o, + kf()
= w, + ak; cos w,t, (6.10)

where k; is the frequency modulation constant; typical units are in radians per second
per volt. Defining a new constant called the peak Jfrequency deviation,

Aw = ak;, (6.1
we can rewrite Eq. (6.10) as
W = o, + Aw cos w,t. (6.12)
The phase of this FM signal is [cf. Eq. (6.6)] (let 6, = 0 for convenience)

Aw |
0(t) = oz + — sin @t = 0t + B sin w,t, (6.13)

m

! Although these are written in terms of PM signals, the conclusions are applicable to FM as
well by substituting

krjuf('r)(h' for k,f(r).
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where
B = Aw/w, (6.14)

is a dimensionless ratio of the peak frequency deviation to the modulating frequency.
The resulting FM signal is

beult) = RelAe™}
= RelAeleBnem'} (6.15)
Note that Eq. (6.15) can be rewritten as
bem(t) = A cos (o + B sin wyt) . (6.16)

Alternatively, an identity for the real part of a product (cf. Appendix A) may be used
to rewrite Eq. (6.16) as

deu(t) = A cos wt cos (B sin w,t) — A sin w sin (B sin w,t).  (6.17)

It is fairly obvious that either we will have to approximate this result, or seek some
alternative approach. For small values of 8 we can write

i cos (B sinw,t) = 1, (6.18)
sin (8 sin w,t) = B sin w,t. (6.19)

The condition where 8 is small enough for these approximations is the condition for
narrowband FM (NBFM). Usually a value of 8 < 0.2 is taken to be sufficient to sat-
isfy this condition. Using Egs. (6.18), (6.19) in Eq. (6.17), we obtain an approximate
solution for small 3:

brprm(t) = A cos ot — BA sin w,t sin .. (6.20)
It is instructive to compare Eq. (6.20) with an equivalent expression for an AM signal:
dam(t) = A cos wt + mA cos w,t COS W (6.21)

As suggested by a comparison of Egs. (6.20), (6.21), the parameter (3 is called the
modulation index of the FM signal.

Although the narrowband FM signal and the AM signal have similarities, they are
distinctively different methods of modulation. The similarities and differences are
portrayed by considering their phasor representations. Expanding Eq. (6.20) [or Eq.
(6.15)] in phasor form, we have

daprm(t) = Re{Ae™ (1 + jB sin w,t)}
%’P{Ae’jw“'(] L %,Bejw'"[ s %Be—jwmr)}. (6.22)

Similarly, Eq. (6.21) can be written in phasor form as
dan(t) = RefAe’ (1 + m cos w,t)}
= RefAe™ (1 + ime™™ + tme )} . (6.23)
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Jwet

Taking the term Ae’* as the reference (i.e., suppressing the continuous , rotation),
we show the phasor representation of each of these waveforms in Fig. 6.3. The resul-
tant waveform can be found by rotating the entire phasor diagram at an angular rate
of w, rad/sec and then taking the projection of the resultant on the real axis.

From Fig. 6.3, the differences between Eqgs. (6.22) and (6.23) become quite evi-
dent. In the AM waveform, the modulation is added in phase with the carrier whereas
in NBFM the modulation is added in quadrature with the carrier. The NBFM case
gives rise to phase variations with very little amplitude change, whereas the AM case
gives amplitude variations with no phase deviation.
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Figure 6.3 Phasor representation of (a) AM and (b) NBFM.

It is instructive to determine the limits on B8 from the results of the phasor dia-
grams in Fig. 6.3(b); the phase angle from the carrier is

v(t) = tan”' (8 sin w,t). (6.24)

The instantaneous frequency deviation from the carrier frequency should be equal

to Aw cos w,t = Bw, cos w,! and is found by taking the derivative of this phase
angle, or,

dy _ By, cos ot

- 2 D!
T = 3 < L :
o By A TOMY Bw,, cos w,t, if B sin” ot <1 (6.25)

The amplitude of the resultant phasor should be a constant (A); checking from the
phasor diagram, we find

AV + Bsinf o ~A if B sin’ ot <1. (6.26)

Because sin’ w,t < 1, these approximations are valid if 8° < 1. Choosing 8> < 0.1,
we find that 8 < 1/ V10 = 0.316 is a reasonable bound for the narrowband approxi-
mation. Values as high as 0.50 can be used in practice if the resulting amplitude
modulation is removed by amplitude-limiting the angle-modulated waveform.
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The addition of the modulation in quadrature with the carrier in NBFM, in contrast
to that in phase in AM, suggests a method of generation for the NBFM or NBPM
case using phase shifters and balanced modulators as shown in Fig. 6.4. This method
is commonly used in the generation of NBFM and NBPM signals. Note that even
though we have been discussing the FM case, the PM case follows in the same manner.
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Figure 6.4 Generation of signals using balanced modulators: (a) AM;
(b) NBPM; (c) NBFM.

Summarizing, narrowband FM (and PM), like AM, is an example of linear modu-
lation. A major difference is that the modulation is added in phase with the carrier in
AM, whereas it is added in quadrature with the carrier in NBFM. Both systems re-
quire a bandwidth of W = 2w, to transmit a signal of w,, rad/sec in spectral width.
The modulation index in FM is 8 = Aw/w,, and a useful criterion for NBFM is
B <0.2.

DRILL PROBLEM 6.2.1

Calculate the maximum (peak)-percentage amplitude, phase, and frequency error in-
curred in using the phasor approximations to narrowband FM for the sinusoidal case
when (a) 8 = 0.20; (b) B8 = 0.50.

ANSWER: (a) 2.0%, 1.3%, 3.8%; (b) 11.8%, 7.3%, 20.0%.
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EXAMPLE 6.2.1

Solution

A comparison of the two phasor representations in Fig. 6.3 motivates us to investi-
gate the simultaneous use of both amplitude modulation and narrowband frequency
modulation for the possible elimination of one sideband. Investigate the possible use
of this technique, for sinusoidal modulation, to generate SSB-LC signals.
For simultaneous amplitude and frequency modulation we write

d(t) = Re{A(l + m cos w,t) exp [jlws + B sin w,1)]},

where m, 8 are the amplitude- and frequency-modulation indexes, respectively. For
the NBFM condition, 8 < | so that

exp (jB sin o) = 1 + jB sin w, 1.
Under these conditions, we have
d(t) = ReA(l + m cos w,t) (1 + jB sin w,t) exp (o)},

which can be rewritten as

o(r) = .//I)F{A(l + %ej"""' + %e_”"””") (l + gej“’"" = ge_j‘”“")e"'“’“} .

If 3 <1 and m < 1, then the second-order term (mf3) in the approximation is very
small. Neglecting these second-order effects, we get

AN A CEY YOS S

Note that, in contrast to AM, the two sidebands may have unequal magnitudes if
some FM is also present. Now if we set 8 = m, we obtain the (approximate) SSB-
LC signal

(b(t) ol nj/‘l)?{A[I + ’ne'iwml]gjwﬁ‘[} v
or,

b(r) = A cos ot + mA cos (. + w,)t.

DRILL PROBLEM 6.2.2

Sometimes when AM is the desired modulation, a combination of AM and FM can
actually occur as a result of an imperfect modulator. Combined AM and NBFM is
characterized on a spectrum-analyzer display by two sidebands of unequal amplitude.
This arises because the AM sidebands are of the same phase but the NBFM sidebands
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6.3

are of opposite phase. Because the intended modulation is AM, the incidental FM in-
troduced is assumed to be the smaller of the two effects.

As an example, suppose that a spectrum-analyzer measurement of the output of a
modulator using sinusoidal modulation indicates a carrier line of unit magnitude, an
upper sideband line of magnitude 0.45 and a lower sideband line of magnitude 0.35.
Calculate the percentage AM and the percentage FM present using the result of Ex-
ample 6.2.1.

ANSWER: 80%; 10%.

WIDEBAND FM

Up to this point we have relied heavily on the use of the Fourier transform of a gen-
eral signal f(¢) to give us the spectral density F(w). However, if the value of 8 is not
small, the Fourier transform of a general angle-modulated waveform cannot be evalu-
ated. For specific cases the integration can be performed numerically or in terms of
tabulated values. Therefore we shall first try to establish some bounds on the spectral
density before we are forced to restrict the analysis to a few given modulating signal
waveforms.

A measure of the peak amplitude-to-frequency conversion is the peak frequency
deviation, Aw. This represents the maximum amount that w; deviates from the “aver-
age” value of w,. This is demonstrated for two differing cases in Fig. 6.5.

Figure 6.5 Definition of maximum (peak) frequency deviation.

There are two identifiable mechanisms in the description of the spectrum of an FM
waveform. The first is attributable to the rate of change of the modulating signal;
i.e., the frequency content of the modulating signal. The second effect, peculiar to
FM, is the proportionality between the amplitude of the modulating signal and the in-
stantaneous frequency of the FM signal. The instantaneous frequency follows the am-
plitude of the modulating signal, but this does not imply necessarily that the spectral
density follows the same pattern. The concept of instantaneous frequency and the fre-
quency used in the Fourier transform are not identical.

In the NBFM approximation, it is seen that the second effect was neglected in
favor of the first since Aw < w,,. In fact, we now see that for the sinusoidal case the
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modulation index 8 = Aw/w,, gives us a relative measure as to the importance of
these two effects in FM.

The idea of a modulation index can be extended to more general waveforms. For a
general pulse waveform we can define a peak frequency deviation Aw and a time du-
ration T; if the waveform is periodic, then T is the period. The product 8, =
(Aw/2m)T is a dimensionless number, called a dispersion index, which takes the
place of the modulation index for more general modulation waveforms. It is easy to
see that 8, — @ for sinusoidal modulation. For very low dispersion indexes the spec-
tral content of a modulating signal largely controls the magnitude of the FM spectral
density. For very high dispersion indexes, the amplitude-to-frequency conversion
largely controls the magnitude spectral density. Phase effects are not as predictable
because they depend on the relative phasing between signals. What happens for inter-
mediate values must be examined on the basis of each given type of signal.

Returning to the sinusoidal case of FM, let f(t) = a cos w7 and &; = 0, + Aw
cos w,t. The spectral content of the modulating signal is at w, rad/sec. The peak am-
plitude-to-frequency conversion is Aw rad/sec. Then for very low values of 8 =
Aw/w, (that is, Aw < w,) the spectrum will be band-limited to 2w,. On the other
hand, for very high values of 8 = Aw/w, (that is, Aw > w,) the amplitude-to-
frequency conversion will predominate and we would expect the bandwidth to be on
the order of 2Aw. We therefore have some rather intuitive bounds on the bandwidth
at both extremes.

'y

6.3.1 * General Approximations

Another general intuitive comment can be made here before restricting ourselves to
specific waveforms. If we let 8, — (8 — « for the sinusoidal case), we would ex-
pect the amplitude-to-frequency conversion to completely predominate. From the
ncept of a spectral density we would then expect the spectral magnitudes to be in
ion to the fractional time spent at each frequency.” For example, let f(r) = a
cos w,t Sonthat the frequency deviation about the carrier, 0| = w, — w,, is

o = Aw cos w,t, (6.27)

or
) for |w!| = Aw. (6.28)
Ul

The fractional amount of time per unit of

t]ar] _ 1/(2m) .
T |dow! AoV1 — (0! /Aw)? )

' This is sometimes referred to as Woodward's theorem.

¥ The reader with some knowledge of probability will recognize this as the pro
function of the modulating waveform for uniform phase.
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EXAMPLE 6.3.1

Therefore as 8, — = (in this case 8 — ) the magnitude weighting of the spectral
density of the FM waveform will approach the shape shown in Fig. 6.6 over band
limits 2Aw in width. Note that this is based on a signal T units long; for the periodic
case the spectral density will be composed of impulses with weights determined from
this curve. Effects of phase may cause the individual components to vary somewhat
from this approximation. This result gives a relative distribution of power; the correct
scaling factors can be found by setting the integral of this result equal to the average
power in the modulated waveform.

~__ Harmonics,
= if periodic

w

W —"‘IL'—Wm
Aty ——f—————— Ay ———]

Figure 6.6 ApproximaYon to the magnitude FM spectral density as 8 — =,
sinusoidal case.

Solution

A sinusoidal signal at a frequency of wNad/sec is frequency-modulated by the saw-
tooth waveform shown in Fig. 6.7(a). The\peak frequency deviation on each side of
the carrier is Aw rad/sec, as shown in Fig. 8 7(b). Describe the approximate magni-
tude spectral density as the dispersion index oNthe system becomes very large.”

As 8, — o, the bandwidth approaches 2Aw and t
mated by

magnitude spectrum is approxi-

] Awt T/2 <t <
O =i =
S i)
t s v
Ena. Gl gt
20w
1| dt 1
o e = —Aw < o < Aw.
Tldw | ~ 28w et eyt

¥ This is a simplified version of the type of modulation that a bat uses (at ultrasonic fequen-
cies) for navigation and target location. It is also used for radar purposes.
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series of impulses would
computation of a magnitude

present spaced by w, units. A numerical example of the
ectrum for 8, = 50 is shown in Fig. 6.8.

Figure 6.8 Computed magnitude spectrum for the discussed in

Example 6.3.1.

DRILL PROBLEM 6.3.1

A sinusoidal signal at a frequency of w, rad/sec is frequency-modulqted by a sym-
metrical square wave. The peak frequency deviation is Aw. Describe the\approximate
magnitude spectral density as the dispersion index becomes very large.

ANSWER: %S(w - w, + Aw) + %B(w — w, — Aw).

6.3.2 Sinusoidal Case

Having obtained some intuitive insights into the mechanisms of FM, we now seek
to extend our knowledge by using the Fourier transform. As pointed out earlier,
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however, it is not possible to evaluate the Fourier transform of a general FM wave-
form and so we restrict the analysis here to pure sinusoids. Although pure sinusoids
make for rather uninteresting communications, the results of the analysis hopefully
will permit us to draw some more general conclusions. Because FM is a nonlinear
modulation we cannot appeal to superposition here.

As before, we choose f(f) = a cos w,t; for FM,’

w(t) = w. + ak; cos w,t
= w, + Aw cos w,t,

and

0(r) = f;wi(r) dr
0

Aw |
= @t + — sin w,f

m
= @t + B sin w,1.

Using complex notation,

RefAe™}

= Re{Ae!gPmem’) (6.30)

beml?)

The second exponential in Eq. (6.30) is a periodic function of time with a fun-
damental frequency of w,, rad/sec. It can be expanded in a Fourier series,

estinwmrz 2 F*”ejnmml’ (631)

n=-x

where

1 T2 e J
F,, -y ? f e'lﬁsmwmlé’ —nomt gy (632)

[

Making a change of variable ¢ = w.t = 27/T), we get
i L b
il —f g/ BsinEml) gt (6.33)
2y s

This integral can be evaluated numerically in terms of the parameters » and 3, and
because it occurs in many physical problems it has been tabulated extensively. It is a
function of n and 3, denoted by J,(B), and is called the Bessel function of the first
kind (signified by the “J”) of order n and argument 8.* Note that in our case n is an
integer (negative and positive) and 8 is a continuous variable (positive values only).
Some of these functions are plotted in Fig. 6.9. Though we do not wish to get in-

" A constant term is introduced if the lower limit in the integral is not zero; this does not
change the analysis and will be omitted for convenience.
* A table of Bessel functions is given in Appendix G.
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J.8)

volved in discussing the detailed characteristics of Bessel functions, we do have use
for the following properties:

1. J,(B) are real valued,
2. J(B) = J_,(B), for n even,

3. J,(8) = —J_,(B), for n odd, (6.34)
SRy =
Using these results we can rewrite Eq. (6.31) as
ejﬁsinwmt = z Jn (B)ejnmml’ (635)
and Eq. (6.30) becomes i
Pru(t) = //?e{Aej“’C' > J,,(,B)ef""’m’}, (6.36)
bemlt) = A 3 J,(B) cos (w, + nw,)t. (6.37)

This can be expanded, if desired, using properties (2) and (3) of Eq. (6.34).

From these results, it is evident that an FM waveform with sinusoidal modulation,
in contrast to AM, has an infinite number of sidebands. However, the magnitudes of
the spectral components of the higher-order sidebands become negligible and, for all
practical purposes, the power is contained within a finite bandwidth. Plots of the
sideband magnitudes for several different values of 8 are shown in Fig. 6.10. Note
that 8 can be varied by varying Aw or by varying w,,, as demonstrated in Fig. 6.10.

1.0

0.8
0.6

0.4

Figure 6.9 Plot of Bessel function of the first kind, J,(8).
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Figure 6.10 Magnitude line spectra for FM waveforms with sinusoidal
modulation: (a) for constant w,,; (b) for constant Aw.

How many sidebands are important to the FM transmission of a signal? This will
depend on the intended application and the fidelity requirements. A rule commonly
adopted is that a sideband is significant if its magnitude is equal to or exceeds 1% of
the unmodulated carrier, i.e., if

|7,(8)| = 0.01. (6.38)

The actual number of significant sidebands for different values of 8 can be found
from a plot or a table of Bessel functions. It can be seen from the plots of Fig. 6.10
that the J,(8) diminish rapidly for n > B, particularly as 8 becomes large. A graph
of the ratio n/g for |J,(8)| = 0.01 is shown in Fig. 6.11 and it is seen that the ratio
approaches one as 8 becomes very large. The bandwidth for very large 8 can then be
approximated by taking the last significant sideband at n = 8 so that

W = 2nw, = 2Bw, = 2—w
®

or
W = 2Aw for large 8. (6.39)

For very small values of 8, the only Bessel functions of significant magnitude (see
Fig. 6.9) are Jy(B) and J,(8). Therefore the bandwidth for the narrowband case (veri-
fying an earlier result) is

W=~ 2w,  for small 8. (6.40)
We now have bounds on the limiting cases. It would be convenient to have a more

general rule to take care of the intermediate cases and, if possible, also approach the
limiting cases in a continuous manner. One such rule was proposed by J.R. Carson':

W= 2Aw + w,), (6.41a)
4
i
n
8 0.01
Ll 0.10
| 1 1 L
0 4 8 12 16 20
8
Figure 6.11 Number of FM sidebands for which |/,(8)] = 0.01 and

a8 = 0.10.

"J.R. Carson was one of the first to investigate FM in the 1920s. See, for example, J. R. Car-
son, “Notes on the Theory of Modulation,” reprinted in Proceedings of the IEEE, vol. 51
(1951): 893-896.
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EXAMPLE 6.3.2

which can also be written as
W =~ 2w, (1 + B). (6.41b)

Carson’s rule approaches the correct limits for both very large and very small §; it
is widely used in practice because it gives a very convenient approximation that is
reasonably accurate. It always gives less bandwidth than our definition of significant
sidebands, with a maximum bandwidth etror in the neighborhood of 8 = 1. The av-
erage power in the sidebands neglected, however, is small and less than 1% of the
total average power in the FM waveform. In fact, the approximation is good enough
that we now release the restriction that the modulating signal be purely sinusoidal and
make the wide generalization that Carson’s rule holds for general modulating signals
that are band-limited and have finite power. An intuitive justification for this is that
the two terms in Carson’s rule display the effects of the two mechanisms in the gen-
eration of FM, and that these effects on the bandwidth are additive. It works surpris-
ingly well.

The analytical method used here in expanding in a Fourier series is a very power-
ful one, and can be used for more general periodic modulating signals. This is ex-
plored_in problems at the end of this chapter. Because we must integrate the
modulating signal in FM to obtain the phase, we require that the modulating signal
for FM have zero mean value.

Solution

A 10 MHz carrier is frequency-modulated by a sinusoidal signal such that the peak fre-
quency deviation is 50 kHz. Determine the approximate bandwidth of the FM signal
if the frequency of the modulating sinusoid is (a) 500 kHz; (b) 500 Hz; (¢) 10 kHz.

(A1, 01 L
a)B_fm_soo 0.10

This is a narrowband FM signal; B = 2f, = 1 MHz.
b) B8 = 100; this is the wideband case and

B = 2Af = 100 kHz (Carson’s rule gives 101 kHz).

¢) B = 5; use of Carson’s rule gives B =~ 2(Af + f,) = 120 kHz. A more accurate
method is to use Fig. 6.9 or Appendix G to find the number n of significant
sidebands:

B = 2nf, = 2(8) (10 kHz) = 160 kHz.

A magnitude line spectrum for 8 = 5 is shown in Fig. 6.10; in this case the spac-
ing between lines would be 10 kHz.
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DRILL PROBLEM 6.3.2
Repeat Example 6.3.2 if the peak frequency deviation were decreased to 20 kHz.
ANSWER: (a) 1 MHz; (b) 41 kHz; (c) 80 kHz (60 kHz if you use Carson’s rule).

DRILL PROBLEM 6.3.3
A given FM signal is
dem(t) = 10 cos [10°7¢ + 8 sin (10777)].

Determine the following: (a) the carrier frequency, f,; (b) the modulation index, S3;
(c) the peak frequency deviation, Af.

ANSWER: (a) 500 kHz; (b) 8; (c) 4 kHz.

6.3.3 Commercial FM Transmissions

As noted earlier, narrowband FM is linear and therefore much of the analysis for AM
applies. Advantages in using narrowband FM over AM include the possibility of a re-
sponse to zero Hz (important in telemetry and recording) and the rejection of large
noise pulses (as a result of clipping, or limiting, the amplitude of the waveform)
which may tend to saturate the receiver. Narrowband FM is used primarily in teleme-
try and mobile communications.

Provided that we are content with only the bandwidth, we can apply our knowl-
edge of purely sinusoidal FM to more general waveforms also in the wideband case.
For wideband FM we noted that the bandwidth depended mainly on the peak fre-
quency deviation, Af. This in turn depends, for a given modulator constant, on the
amplitude of the modulating signal. Therefore some limit must be placed on the modu-
lating signal to avoid excessive bandwidths even though the bandwidth of the modu-
lating signal may be well-defined.

For commercial FM broadcasting, the Federal Communications Commission (FCC)
in the United States assigns carrier frequencies spaced at 200 kHz intervals in the range
88-108 MHz and fixes the peak frequency deviation at 75 kHz." The 200 kHz be-
tween station assignments, in comparison with 10 kHz for AM broadcasting, allows
the transmission of high-fidelity program material with room to spare, and wideband
FM is used to fill the band. Suppose we take the modulating frequency f,, to be 15 kHz
(typically the maximum audio frequency in FM transmissions). Use of Carson’s rule
then yields a bandwidth of B =~ 2(Af + f,) = 180 kHz, well within the required

" See Appendix C.
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bandwidth. Our sinusoidal analysis indicates that 8 = 5 and the bandwidth occupied
by significant sidebands is

2(8) (15 kHz) = 240 kHz

(see Fig. 6.9, 6.10, or 6.11). The discrepancy, of course, lies in the definition of
bandwidth. However, we chose an extreme case as far as typical audio transmission
is concerned, because we assumed that the 15 kHz tone was set at the maximum am-
plitude to produce a peak frequency deviation of 75 kHz. Typical program material
does not contain as much at the higher frequencies. For lower audio frequencies the
value of 8 increases and the bandwidth occupied by the significant sidebands ap-
proaches the wideband limit of 2Af = 150 kHz. (For audio signals with full maxi-
mum amplitude and frequencies below about 5 kHz all significant sidebands are within
the 200 kHz bandwidth.) Note that if the amplitude weighting is uniform, it is the
highest modulating frequency that governs the final bandwidth.

The transmission of one audio channel leaves room for additional program mate-
rial within the bandwidth allocated. Stereo multiplexing and other auxiliary transmis-
sions often occupy the higher frequency portions of the modulating spectrum. These
were _discussed in Chapter 5. To keep the bandwidth restricted, the maximum ampli-
tude of these transmissions is reduced. The spectrum of a typical commercial trans-
mission before the FM transmitter is shown in Fig. 5.12.

In the FM station, the left (L) and right (R) audio signals are derived from micro-
phones, records, tapes, etc., and a preemphasis is applied to each channel (this is dis-
cussed later in this chapter). For stereo broadcasts, a pilot subcarrier at 19 kHz is
permitted 10% of the total peak-frequency deviation (of 75 kHz). When there is a
pause in program material (and no auxiliary transmissions), the modulation index is
B = (10%) (75 kHz)/(19 kHz) = 0.395. This is approximately in the narrowband
condition. Thus when there is a pause in program material, a stereo FM broadcast
can be identified on a spectrum analyzer by a large carrier line plus two first-order
sidebands each spaced 19 kHz from the carrier.

The Subsidiary Communications Authorization (SCA) system permits a commer-
cial FM station to add another broadcasting channel in addition to the monophonic
and stereo channels. The SCA transmissions carry no commercial messages and are
intended for private subscribers who pay a fee for background music in stores, physi-
cians’ offices, etc. In contrast, the other FM transmissions are for general public use
and are supported by commercial advertisements. The SCA channel uses narrowband
FM. The subcarrier center frequency is usually set at 67 kHz, although this choice is
not set by the FCC. A total peak-frequency deviation not exceeding 75 kHz is still
required. For monophonic transmission only, this entire 75 kHz is available. If SCA
is used with mono, the FCC limits the SCA portion to 30% of the maximum peak-
frequency deviation, leaving 70% for the mono channel.

In stereo broadcasting with no SCA, 10% of the maximum peak deviation is used
for the 19 kHz pilot subcarrier, leaving 90% to be divided between the (L + R) and
(L — R) stereo channels. The average amplitudes of the L and R channels are nor-
mally kept equal. The maximum (L. + R) amplitude is set to provide 90% modula-
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tion when the (L — R) amplitude is zero. Now if (L — R) is maximum, then (L + R)
will go to zero, and if either L or R goes to zero, (L + R) and (L — R) will each take
a maximum of 45% of the total peak frequency deviation. Thus there is a seesaw
effect between the (L + R) and (L. — R) channels such that the total does not exceed
90% of the peak frequency deviation capability allowed.

When used with stereo multiplexing, the SCA channel is limited to 10% of the
maximum peak frequency deviation. This leaves 80% for the stereo channels (i.e.,
10% for SCA plus 10% for the 19 kHz pilot subcarrier). The system performance is
the same as in the preceding paragraph except that now the stereo channels are al-
lowed 80% of the maximum peak frequency deviation instead of 90%. Also, with the
relatively low peak frequency deviation allowed, the SCA transmission does not have
a very good signal-to-noise ratio and is used for only local coverage. Station muting
(e.g., dropping the subcarrier to actuate an audio silencer circuit in the receiver) is
often employed to silence the noise between records or tapes in the SCA transmissions.

Public FM broadcasting is an example of the use of DSB-SC and NBFM methods
to frequency-multiplex several channels before using wideband FM for the final
transmission. Frequency modulation is also used for the audio in commercial televi-
sion transmissions. The peak frequency deviation for this use is fixed at 25 kHz by
the FCC. Assuming a maximum audio frequency of 15 kHz, use of Carson’s rule
gives a bandwidth of 80 kHz for the sound channel of a television receiver.

The relatively large bandwidth required for commercial FM, as compared with
AM, is the penalty for obtaining substantial improvement in noise and interference
rejection. This noise rejection increases with increasing Af and, therefore, with in-
creasing bandwidth. These topics will be discussed in a later section.

AVERAGE POWER IN ANGLE-MODULATED WAVEFORMS

For sinusoidal modulation, we can write [cf. Eq. (6.16)]
bpmlt) = A cos (wt + B sin w, 1) .

The mean-square value of this expression is

dru(t) = A%/2, (6.42)

showing that the total average power in an FM waveform is a constant regardless of
the modulation index. This is in contrast to AM where the total average power was
proportional to the modulation index. This conclusion can be extended to any arbi-
trary band-limited modulating waveform.

Equation (6.42) can be verified by writing ¢py(r) in a series expansion [cf.
Eq. (6.37)],

Prult) = A 2 J(B) cos (v, + nw,)t.

n=—=



318 ANGLE MODULATION

EXAMPLE 6.4.1

As a result of the orthogonality of the cosine terms, the mean-square value of the sum
is equal to the sum of the mean-square values and we get

diu(t) =34 2 TP (6.43)

n=—%

But from property (4) in Eq. (6.34),

D2 B =il 5

so that
biult) = A%/2.

The mean-square value of the unmodulated carrier is A?/2. As the modulation in-
dex B is increased from zero and the sidebands are nonzero, the carrier component
decreases. According to Eqs. (6.42) and (6.43), this takes place in such a manner as
to always keep the total mean-square value constant. The mean-square value of each
sideband is 3A°J2(B) (recall also that sidebands occur in pairs). The mean-square
value, of course, is identical to the average power if the resistance is 1 ohm and is
related to the average power by a constant (i.e., the resistance) for all other cases, so
the conversion to units of power is straightforward.

It is possible to make any particular sideband, including the carrier, as small as de-
sired by a proper choice of the modulation index 8. From a table or graph of Bessel
functions (e.g., Fig. 6.9), we see that the carrier term, J4(83), can be made zero for
B = 2.405,5.52, ..., and in these cases all of the average power is in the sidebands.
These points are easy to read with a spectrum analyzer and serve as very convenient
calibration points for 8 and Af.

Solution

A given FM transmitter is modulated with a single sinusoid. The output for no modu-
lation is 100 watts into a 50-ohm resistive load. The peak frequency deviation of the
transmitter is carefully increased from zero until the first sideband amplitude in the
output is zero. Under these conditions determine (a) the average power at the carrier
frequency; (b) the average power in all the remaining sidebands; and (c) the average
power in the second-order sidebands.

a) Using Fig. 6.9 and Appendix G, we see that J,(8) = O first occurs at 8 = 3.8

and that J(3.8) = —0.40. The average carrier power is then
| J33.8)
P.=———(100 W) = 16 W.
J4(0)
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b) The average power in the sum of the remaining sidebands is
P,=P —P. =100W — [6 W =84 W,
¢) Jy(3.8) = 0.41. The average power in the second-order sidebands is

J3(3.8)

P.=2
J5(0)

(100 W) = 34 W.

6.5

DRILL PROBLEM 6.4.1

Determine the peak amplitude of (a) the total waveform and (b) the upper second-
order sideband in Example 6.4.1.

ANSWER: (a) 100 V; (b) 41 V.

DRILL PROBLEM 6.4.2

Show that the rms value of Eq. (6.16) can be written as

\J78) + 23 k).

=
Si>

(1)

PHASE MODULATION

There is no basic difference between the mechanisms involved in the generation of
phase modulation (PM) and frequency modulation (FM). In fact, the only difference
is that the phase in the modulated waveform is proportional to the input signal ampli-
tude in PM and to the integral of the input signal in FM. This introduces only a slight
modification and we shall point that out here.

For an FM signal with the sinusoidal modulation f(t) = a cos w,t, the instanta-
neous frequency is

wt) = o, + ak; cos w,t

w, + Aw cos w,t,

where Aw is the peak frequency deviation (in radians per second) and k; is the fre-
quency-modulator constant (in radians per second per volt). The modulation index

B 3 Aw/o,, is a dimensionless number and serves as a guide to the behavior of the
carrier and sidebands.



320 ANGLE MODULATION

EXAMPLE 6.5.1

For PM with the same modulating signal we have
6(t) = ot + ak, cos w,t + by
= wt + Af cos w,t + 6,

where A@ is the peak phase deviation (in radians) and k, is the phase-modulator con-
stant (in radians per volt). The instantaneous frequency is

do

w(t) = 5

= w, — akm, sin 0,/

= w, — Aw sin o,f.

Thus we see that the peak frequency deviation in PM is proportional pot only to the
amplitude of the modulating waveform but also to its frequency; that is,

Aw = {akf oL BN (6.44)
ak,w, = (Adw, for PM

This makes PM less desirable to transmit when Aw is fixed (as in commercial FM).
There are some advantages in the demodulation of PM, however, which make its use
desirable. (These will become more evident later in this chapter.) The role of the
modulation index B remains the same as in FM. Formally, then, we can compute
Aw = akw, = Abw, and then proceed as if the modulation were FM as far as band-
width, sidebands, etc. are concerned. Note that the numerical value of 8 is the peak
phase deviation, A6, in the PM case.

2

Solution

A carrier is phase modulated by a sinusoidal signal of 5 kHz and unit amplitude. and
the peak phase deviation is one radian. Calculate the bandwidth of the PM signal
(a) using Carson’s rule; and (b) using the definition of significant sidebands.

a) Af = (A6)f,, = 5 kHz and Carson’s rule gives
B = 2(Af + f,) = 20 kHz.
b) B = Af = 1; using a table of Bessél functions,
B = 2nf, = 2(3) (5 kHz) = 30 kHz.

DRILL PROBLEM 6.5.1

Here we consider a PM system in which the phase may take on only two 'possible
values — known as phase-shift-keying (PSK). Assume that a phase modulator is modu-
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lated by a periodic symmetric square wave of unit amplitude. Determine the required
value of the peak phase deviation, A§ (—7/2 = A# < 7/2), such that the spectral
component at the carrier frequency is zero in the output.

ANSWER: +90°.

GENERATION OF WIDEBAND FM SIGNALS

6.6.1 Indirect FM

One method of generating wideband FM signals is to produce a narrowband FM sig-
nal first and then to use frequency multiplication to increase the modulation index to
the desired range of values. This is known as the indirect method of generating wide-
band FM signals. A second method —known as the direct method —is to vary the
carrier frequency directly with the modulating signal. We shall now examine these
two methods.

Section 6.2\¢howed that the generation of narrowband PM is relatively easy and that
narrowband can then be generated by first integrating the modulating signal.
However, the modylation index obtainable by use of this method is restricted to very
low values (8 < 0.X\(in theory; 8 < 0.5 in practice). To generate wideband FM, a
method of increasing Sge modulation index must be used in this approach. The
method used is that of the\{requency multiplier.

A frequency multiplier is a nonlinear device designed to multiply the frequencies
of the input signal by a given fagtor. For example, the input-output characteristic of
an ideal square-law device is

(6.45)
If the input signal is the FM signal,
ety = A cos (ot + BSin w, 1),
the output is
e,(t) = aA’cos’ (ws + B sin w,t)
= (1/2)aA[l + cos Qw.t + 28 sin w, (6.46)

The first term in this result is simply a constant level and is easilyNemoved with a
filter. We conclude that both the carrier frequency and the modulation_index have
been doubled in this process. In a similar manner, use of an nth law devids followed
by a filter yields a carrier and a modulation index that have been increased by factor
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of n. Equivalently, the peak frequency deviation Aw has been increased by n in the B bl
multiplication (w,, has remained unaltered). P\" \\v\

In practice, very abrupt nonlinearities can be generated using special diodes (e.g., o o Y + Frequency Frequsiicy Frequency |/ 1O power
thewaractor and the step-recovery diode) which yield many harmonic terms. It is pos- | multiplier, x 1, cOmverter o snltplra il ur(ljlphflers
g 2 and antenn
sible 1 ultlply by an order of magnitude or more in one step using these tech- ' =

niques. Li tions include the fact that losses incurred in the harmonic generation
"rrn’

mplification and small phase instabilities in the multiplication pro-
ear as noise in the output. With good design techniques,
order of 10° are achievable with only a few degrees of

require addition
cess accumulate an
multiplication factors on

cos'2wfs ¢

phase noise. —_—
Use of frequency multiplication tagreases the carrier of the FM waveform as well Sl

as the modulation index. This may resultNg very high carrier frequencies in order to

achieve a given modulation index. To avoid thig, frequency converters are often used e

equency converter is essentially phase modulator
tes the spectrum of a signal
k diagrams of the fre-

2. Note carefully

to control the value of the carrier frequency. The
the same as discussed in connection with AM and tran
by a given amount but does not alter its spectral content.
quency multiplier and the frequency converter are shown in Fig.

Narrowband
frequency modulator

Figure 6.13 Block diagram of an indirect (Armstrong) FM transmitter.

are present), whereas in the frequency converter all spectral components of the™ EROMBLE 6.6

signal are multiplied by a sinusoid of a fixed frequency. The former operation sprea
the spectral content (this can be verified using the frequency convolution property
discussed in Chapter 3) and the latter translates the spectral content in frequency.

The method of obtaining a wideband FM waveform from a narrowband one using
frequency multiplication is called the Armstrong indirect FM transmitter.” A block
diagram of a typical Armstrong-type transmitter is shown in Fig. 6.13. As a result of
the multiplication and heterodyne operations, it is difficult in this system to maintain
the correct magnitude of carrier to sidebands, and thus it could not be used for an in-
formation signal with dc®content. This drawback can be remedied with use of the
phase-locked loop, a subject introduced in a subsequent section.

A given angle-modulated signal has a péak frequency deviation of 20 Hz for an input
sinusoid of unit amplitude and a frequency of 50 Hz. Determine the required fre-
quency multiplication factor, n, to produce a peak frequency deviation of 20 kHz
when the input sinusoid has unit amplitude and a frequency of 100 Hz, and the angle-
modulation used is (a) FM; (b) PM.

a) Af, = 20 kHz; Af, = 20 Hz; n = Af,/Af, = 1000
Af, = 20 kHz; Af, = (100/50) (20 Hz) = 40 Hz: n = Afy/Af, = 500

i DRILL PROBLEM

| . i = i
lnputh—t-—-- Nj:\Irljl::M fil ! B:l;:ldtz;lss | Ba;;:i[g:ss Output Eomnitan i il
| | : pute the carrier frequ [ and the peak frequency deviation Af of the output of
DI e T e the FM transmitter shown in FIipng. 13 if f, = 200 kHz; £, = 10.8 MHz; Af, = 25 Hz;
e , = 64; n, = 48.
T Sl A ANSWER: 96.0 MHz or 1132.8 MHz; 76

Figure 6.12 Block diagrams of frequency multiplication and frequency
conversion.

6.6.2 Direct FM

" E.H. Armstrong was one of the first engineers to recogmze the possible merits of FM broad-
casting in the 1930s. See, for example, E. H. Armstrong, “*A Method of Reducing Disturbance
in Radio Signaling by a System of Frequency Modulation,” Proceedings of the IRE, vol. 24 In the direct method of generating FM the modulating signal directly cont the car-

(1936); 689-740. rier frequency. An attempt is usually made to generate as wide a frequency devs
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as possible and thus these systems often require less frequency multiplication, if any,
than those using the indirect method. On the other hand, because the frequency is
ontrolled by the modulating voltage, the long-term frequency stability is not as good
crystal-stabilized oscillators generally used in the indirect method. Thus the di-
ethods usually employ some auxiliary methods for frequency stabilization.

The percentage frequency deviation that can be attained in this manner is quite s
To increase the percentage frequency deviation, the frequency modulation is per-
formed at a high frequency and then heterodyned down to a lower frequency.

Other methods that are used successfully at high frequencies include the reflex
klystron and the reactance-tube modulator. The latter consists of a pentode that is op-
erated in such a manner as to produce a capacitance which is proportional to the grid
voltage over a wide range. At lower frequencies the control of RC oscillators with
FET’s and similar devices has been used. Any oscillator whose frequency is con-
trolled by the modulgting-signal voltage is called a voltage-controlled oscillator,
or VCO.

EXAMPLE 6.6.2

A reverse-biased semiconductor diode can be used as a voltage-variable capacitance
for frequency modulation. Assume that the capacitance of a given PN junction is
given in terms of its reverse-bias voltage Vby C = C,/V1 + 2V. Such a diode is to
be used as the capacitance in a parallel LC circuit tuned to a center frequency of
10 MHz when the reverse-bias voltage is 4 V.

a) Determine the modulation constant &, (i.e., the frequency-voltage slope near cen-
ter frequency).

b) Determine the peak frequency deviation permissible for a maximum error of 1%
from a linear frequency-voltage characteristic.
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Solution a) We can write the frequency f as

1 1+

fi= :
2tVLC 2aVLC,
Letting f = f, when V =V, (i.e., at the operating point), we get

(1 + 2v)
1+ 2v)"*

f=rn

Now let v be an incremental voltage about the operating point so that V = V, + v;
also let K = (1 + 2V,) so that

fimnfollsit v/’

Assuming that v <€ K, we can use the binomial expansion to obtain

~ el Ly A
sl ili) - 3lE) -

The modulation constant k; is the slope of the linear frequency-voltage characteris-

tic and is given by
kziggﬁ_ﬁ_ f
f
4\K

ve 2K 2(1 + 2V,
For the given operating point, f; = 10 MHz and V, = 4 volts so that

ke = 0.56 MHz/V.
b

~

Most of the error will arise from the second-order term in the series expansion $o
that we require

which gives

= 66.7 kHz .



Administrador
Línea


326

ANGLE MODULATION

In some cases it is not necessary that the output voltage be sinusoidal, or the out-
put may be wave-shaped by nonlinear shaping circuits or by filtering. In these cases
is p0551ble—and quite attractwe—to generate wideband FM dlgltally Perhaps the

the input waveform and then using a precision ramp generator
oint, followed by a voltage-variable threshold. The point
is exceeded is used to generate a short pulse to signify

[i . ; To power
b 'S;mll)lel_d "l;u;:csfmld Pulset r:d?:ss el
and - ho etector generator e
1
)
Ramp
generator
Clock

Figure 6.14 Digital generation of wideband PM.

6.6.3 FM Multiplexing

It is a common practice 1Qdata transmission to combine several channels of modulated
signals using frequency multiplexing methods and then modulate a high-frequency
carrier with the composite multiplexed signal. To do this, the individual data signals
each modulate an assigned subcarrier. These subcarriers are arranged so that the
channels occupy adjacent frequency bands with some frequency space between them,
known as guard bands. The modulated subcarriers are used to angle-modulate a high-
frequency carrier, as shown in Fig. 6.15.

If FM is used for the subcarrier modulation and for the main carrier modulation,
the composite modulation is referred to as FM-FM; if AM is used, then it is referred
to as AM-FM. The amplitude-modulation methods used for the subcarrier modulation
are DSB-SC or SSB-SC. Large-carrier methods are avoided because too much of the
peak frequency deviation would be used merely to send the AM carrier. Usually a pi-
lot subcarrier is also sent for demodulation. Note that the stereo multiplexing used in
commercial FM is an example of an AM-FM system.

" Applications of both amplitude modulation and angle modulation to proposed stereo AM
transmissions are discussed in Appendix H.
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6./

fi () —w{ Modulator
Subcarrier !*f

f2(t)————=| Modulator |

Subcarrier Eﬁf

—

f3(6)———— Modulator
Sulmurrier.?:1 :

Figure 6.15 A simplified composite modulation system.

FM transmitter f——— To antenna

Angle modulation (both FM and PM) is widely used in multichannel data trans-
mission and telemetry systems. Standards exist for the assignment of subcarriers and
guard bands for the latter.” To allow for realizable filter designs to separate adjacent
channels, it is common to allow some frequency separation between channels.

DEMODULATION OF FM SIGNALS

There are a number of ways to recover the modulating signal from the FM waveform
and we shall discuss only some of them. The overall characteristic must be the same,
however —to provide an output signal whose amplitude is linearly proportional to the
instantaneous frequency of the input waveform.

6.7.1 Direct Method

One method iSNQ use some system that has a linear frequency-to-voltage transfer
characteristic. Such stem is called a frequency discriminator. In our search for a
simple discriminator, weNqged something with a linear amplitude versus frequency
characteristic. The simplest congeptually is that of the ideal differentiator, for we re-

call that its transfer function is givenby H(w) = jw. (Certainly the magnitude charac-
teristic is very linear!)

An expression for the general FM wave is

dpu(t) = A cos l:wct + kff[f(fr
0

" See, for example, E. L. Gruenberg (ed.), Handbook of Telemetry and Remote™Sqntrol, New

York: McGraw-Hill, 1967.
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