
FLEXIBLE HARMONIC/STOCHASTIC MODELING FOR HMM-BASED SPEECH
SYNTHESIS

Eleftherios Banos , Daniel Erro, Antonio Bonafonte, Asuncion Moreno

TALP Research Center, Universitat Politècnica de Catalunya, Spain
e-mail:{lefteris,derro,antonio,asuncion}@gps.tsc.upc.edu

Abstract

In this paper the preliminary results, of a new approach on speech
modeling for statistical parametric HMM-based speech synthe-
sis are presented. The proposed system is based on a flexible
pitch-asynchronous harmonic/stochastic model (HSM) [1]. The
speech is modeled as the superposition of two components: a
harmonic component and a stochastic or aperiodic component.
The fact that the synthesis model is pitch-asynchronous allows
the direct integration to a HMM-based synthesis system. HTS
[2], an open source software toolkit that provides HMM-based
speech synthesis was used. The proposed HSM method was
compared to the HTS baseline system with the same configu-
rations and database. A number of different experiments were
conducted. Results show that high quality of synthesized utte-
rances is reached. A small perceptual test was carried out com-
paring the two systems on quality of the synthetic voice and
similarity to the original voice. HSM outperforms the HTS ba-
seline system in the quality test: HSM 53%, HTS 35,3%, and
undecided 11,7 %. Concerning similarity to the original voice,
HSM-performed slightly better than HTS: HSM 35,3%, HTS
29,4 %, and undecided 35,3 %.

1. INTRODUCTION

Unit-selection is the dominant method in speech synthesis
[3] due to performance advantages such as high quality, and na-
turalness of synthetic speech. However unit-selection systems
are highly dependent on the database and the quality of the re-
corded database. Due to this quality dependency, voice modifi-
cation at the selected units cannot be carried out, and voice con-
version/adaptation is a difficult task by the time being, for unit
selection systems. Furthermore, databases where perfect recor-
ding conditions are not possible to achieve cannot be used. Ad-
ditionally big storage memory is necessary, which is prohibitory
in specific applications. Because of these limitations much re-
search has moved to statistical parametric speech synthesis and
mainly to Hidden Markov Models (HMM)-based systems.

Statistical parametric speech synthesis (from now on we re-
fer to HMM method only), cannot offer yet a high speech quality
comparing to unit-selection, but definitely overcomes most of
the problems listed above offering a very wide area for further
research (i.e.polyglot systems). In addition, HMM theory and
mathematics are well established in many areas of speech tech-
nology. The benefits of applying HMM to speech synthesis are
numerous: (i) it is possible to take advantage from techniques
tested in different fields and adapt them to a different application
(i.e. speech recognition to speech synthesis); (ii) the limitations
of HMMs are known; (iii) as the basic concept of HMMs is the
same for all applications, high-level implemented systems can
be used for different research fields and applications[4].

Moreover, continuous improvement has been observed at
HMM-based-text-to-speech systems. To be more specific, ac-

cording to the Blizzard challenge 2005 [5], 2006 [6], and 2007
[7], HTS system show a significant improvement every year.
Although on [8] the organizers of the Blizzard evaluation, provi-
de the results without pointing to each system by name, someone
can have information about the evaluation methods. On [9] HTS
researchers presented an evaluation of their own system for the
three year Blizzard challenge. On 2005, HTS participated with
a number of changes on the basic system [10]: a STRAIGHT-
based high quality vocoding algorithm used for the F0 extrac-
tion, and spectral and aperiodic analysis, resulted to reduce the
“buzzy” sound that was produced with the basic vocoding te-
chnique. Hidden-semi-Markov models(HSMMs) were used for
improvements on duration modeling. Parameter generation from
HMMs considering global variance (GV) was applied to reduce
the oversmoothing of the generated parameters.

For Blizzard challenge 2006, a semi-tied covariance matrix
was used for full-covariance modeling in the HSMMs, and the
structure of the covariance matrices for the GV pdfs changed
from diagonal to full covariance. The system that was used for
the first two Blizzard challenge was a speaker-dependent sys-
tem.

On 2007, a new speaker-independent system was introduced
[7]. The system was guided from speaker adaptation approaches.
The general results were satisfactory every year and on some
occasions over expectations.

Two main areas of research in HMM-based synthesis are (i)
improving the quality of the synthesized speech in terms of na-
turality and similarity to the original training voice, and (ii) trai-
ning with a small amount of data. This paper focuses on the first
one, which is closely related to the speech parametrization used
by the system and its associated reconstruction method. In this
paper, a high quality asynchronous (harmonic/stochastic model
(HSM) [1]), is applied. The main problem of HSM modeling
to be solved can be centralized on the voiced/unvoiced transi-
tions where the separation of the harmonic part and stochastic
part is not very precise. Vector generation takes advantage of
multi-space distribution HMMs to separate as more precise as
possible the Harmonic generation part from the stochastic gene-
ration part. Preliminary test show that the synthesized voice has
a natural tinge, maintaining the main characteristics of the spea-
ker voice, and outperforms HTS system using the same database
and same configurations.

The remaining part of this paper is organized as follows: At
Section 2 a technical description of the asynchronous HSM mo-
del is given. At Section 3 the integration of the HSM model to
HMM system is discussed. Further, at Section 4 a general des-
cription of an HMM-based synthesis system is given. At Section
5 the main experiments are presented, and the results of a small
perceptual test are discussed. Finally, concluding remarks fo-
llowed by our future intentions and work plans to improve our
model, are presented.
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Table 1. General HSM analysis scheme.

2. DESCRIPTION OF THE HSM IMPLEMENTATION

The harmonic plus stochastic model (HSM) assumes that
the speech signal can be represented as a sum of a number of har-
monically related sinusoids with time-varying parameters and a
noise-like component. The harmonic component is present only
in the voiced speech segments, and it can be characterized at
each analysis frame by the fundamental frequency and the am-
plitudes and phases of the harmonics. The stochastic component
models all the non-sinusoidal signal components, caused by the
frication, breathing noise, etc. It can be represented at each fra-
me by the coefficients of an all-pole filter. A particular imple-
mentation of the HSM was developed at UPC in order to pro-
vide a flexible framework for all kind of signal transformations
[1], especially speech synthesis and voice conversion. During
the next sub-sections, we describe the speech analysis and re-
construction procedures and we discuss some questions related
to the integration of the model into a HMM-based system.

2.1. Analysis

The speech signals are analyzed at a constant frame rate
of 100 or 125 frames per second. Given a speech frame to be
analyzed, frame number k, the fundamental frequency F0(k) is
estimated and a binary voicing decision is taken. If the frame is
considered to be voiced, the amplitudes Aj(k) and phases φj(k)
of all the harmonics below 5KHz are calculated by least squa-
res optimization. The cut-off frequency is given a fixed value
because spectral envelopes are to be extracted from the harmo-
nic component, as it will be explained later. Once the harmonic
component is characterized at every analysis instant, it is inter-
polated and regenerated from the measured values, using 1st or-
der polynomials for the amplitudes and 3rd order polynomials
for the frequencies and phases. Then, the regenerated harmonic
component is subtracted from the original signal, and the remai-
ning part of the signal, which is considered to be the stochastic
component, is LPC-analyzed at each frame. Table 1 shows the
analysis structure of the harmonic plus stochastic model.

2.2. Reconstruction

The signal is reconstructed by overlapping and adding 2N -
length frames, where N is the distance between the analysis
frame centres, measured in samples. Each synthetic frame con-
tains a harmonic part, built by summing sinusoids with harmonic
frequencies and constant amplitudes and phases, and a stochas-
tic part, generated by filtering white Gaussian noise through the
measured LPC-filters. A triangular window is used to overlap-
add the frames in order to obtain the time-varying synthetic sig-
nal. Being k and l the frame number and the harmonic number,
respectively, the following expressions are used to reconstruct
the signal s[n]:

s
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l

A
2
l cos(2πlf

(k)
o

n

fs

+φ
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N
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N
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where m is in the range [0, N − 1]. The speech signals recons-
tructed from the parameters measured during analysis are almost
indistinguishable from the original ones.

Table 2. HMM adopted HSM analysis scheme.

3. TRAINING HMMS ON THE HSM PARAMETERS

The problem of integrating HSM into a HMM-based speech
synthesis system can be faced in two different ways:

1. Training the HMMs directly from the HSM parameters,
and generating speech directly from the synthetic para-
meters. This strategy is problematic for several reasons
concerning mainly the harmonic parameters:

There is a variable number of harmonics, whereas
HMMs require constant length training vectors.

The number of harmonics is in general high, which
makes the learning process more complicated.

The variability of the amplitudes and phases with
respect to F0 is extremely high.

2. Training the HMMs from spectral envelopes calculated
by any method, and using the HSM for reconstructing the
speech signals from the synthetic envelopes. The main
problem of this approach is the loss of spectral resolu-
tion caused by the spectral envelope extraction process.
Nevertheless, according to our experience in voice con-
version, when both the harmonic component and the sto-
chastic component are represented by all-pole filters, the
quality of the resulting synthetic speech is reasonably
high.

The strategy followed in the system presented in this paper is
the second one. The harmonic all-pole filters are calculated by
applying the Levinson-Durbin recursion to the autocorrelation
sequence given by

Rx[n] =
X
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n

fs

) (3)

Note that in this case the phase information is discarded. Before
training the HMMs, the all-pole filters are transformed into their
associated line spectral frequencies (LSF), which are reported
to have very good properties for this kind of mathematical mo-
deling. Table 2 shows the parameters from which the training
vectors of the HMMs are built. During the synthesis process,
when new parameter vectors are generated by the system, the
LSF vectors are converted back into all-pole filters and multi-
plied by the predicted gain. The amplitudes to be used in ex-
pression (1) are calculated by sampling the harmonic envelope
H(f) at multiples of the generated fundamental frequency.

A
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(k)
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The minimum phase response of the harmonic all-pole filter
H(f) can be also used for estimating the phases of the harmo-
nics, but a linear phase term α has to be added in order to keep
them coherent with those of the previous frame. The recursive
expression proposed for the linear phase term α is based on the
assumption that the pitch varies linearly from frame k − 1 to
frame k.

φ
(k)
l = lα

(k) + arg{H(k)(lf
(k)
0 )} (5)

,

α
(k) = α

(k−1) + π
N

fs

(f
(k−1)
0 + f

(k)
0 ) (6)

— 146 —



Figure 1. Overview of a typical HMM-based speech synthesis
system.

4. STATISTICAL PARAMETRIC SYNTHESIS

4.1. Overview of a typical system

Figure 1 illustrates the block diagram of a basic HMM-
based TTS system. It is composed of training and synthesis sta-
ges. In this system context dependent HMMs (phonetic,linguistic
and prosodic context are taken into account) are trained from
feature vectors. The feature vectors consists of spectrum (Mel-
cepstral) and excitation (F0) parts, extracted from the speech
database. Each HMM has state duration probability density fun-
ctions(PDFs) to model the temporal structure of speech. Accor-
dingly, TTS models spectrum parameters excitation parameters
and durations in a unified framework of HMM [10].

4.2. Training

Context dependent HMMs are trained with feature vectors
which consists of spectrum and excitation.The spectrum part in-
cludes the spectral parameters and their delta and delta-delta
coefficients. Excitation part consists of fundamental frequency
(log F0), its delta and delta-delta coefficients. If spectrum and
excitation are trained separately may occur inconsistency pro-
blems between them. The log F0 is composed of one -dimensional
continuous (voiced) and zero-dimensional discrete symbol (un-
voiced) values. To model such observation sequences Multi-
space probability distribution (MSD) HMMS are used. The ba-
sic concept of MSD-HMM, is that they can model the sequen-
ce of observation vectors with variable dimensionality including
zero-dimensional observations [11]. This special kind of HMMs
are extremely useful for our work with HSM, because as explai-
ned above the harmonic part is composed of continues and dis-
crete values, similar to logF0 (e.g., multi-dimensional for voi-
ced, and zero-dimensional for unvoiced).

In common with most other continuous density HMM sys-
tems, HTS represents output distributions

˘
bj(ot)

¯
by Gaussian

Mixture Densities. However, a further generalization is made.
Allows each observation vector at time t to be split into a num-
ber of S independent data streams Ost. The formula for compu-
ting bj(ot) is then

bj(ot) =
SY

s=1

"
MsX

m=1

cjsmN(Ost; µjsm, Σjsm)

#γs

(7)

where Ms is the number of mixture components in stream s,
cjsm is the weight of the m’th component and N(; µ, Σ) is a
multivariate Gaussian with mean vector µ and covariance matrix
Σ, that is

N(o; µ, Σ) =
1p

(2π)n|Σ|e
−

1

2
(o−µ)′Σ−1(o−µ)

(8)

where n is the dimensionality of o. The exponent γs is a stream
weight. It can be used to give a particular stream more emphasis,
however, it can only be set manually.

4.3. Synthesis

In the synthesis part an arbitrarily given text to be synthe-
sized is converted to a context-base label sequence. Then ac-
cording to the label sequence, a utterance HMM is constructed
by concatenating context dependent HMMs. State durations of
the sentence HMM are estimated maximizing the likelihood of
the state duration densities. According to the duration densities
that have been obtained the speech parameter generation algo-
rithm generates the sequence of spectral and excitation parame-
ters (voiced/unvoiced decisions) maximizing the output proba-
bilities [12]. Finally a speech waveform is synthesized using the
appropriate speech synthesis filter.

5. EXPERIMENTS AND RESULTS

The main objective of this work is to show the preliminary
results of the integration of Harmonic plus Stochastic model in
a HMM-based synthesis system.The different experiments de-
pend on the structure of the spectral observation vectors, which
can be split into S independent data streams weighted by a stream
weight factor (7). Multiple data streams are used to enable sepa-
rate modeling of multiple information.

The main goal of this specific research is to take advantage
of this excellent property in combination with multi-space distri-
bution HMMs to manage to separate as more precise as possible
the Harmonic part from the stochastic part. The main problem of
HSM modeling can be centralized on the voiced/unvoiced tran-
sitions where the separation of the harmonic part and stochastic
part is not very precise. Using different streams to model them,
in combination with MSD will resolve to a more independent
modeling of each one. But while MSD utility of HTS, supports
a multi-dimensional to zero dimensional variant vector, does not
support multi-dimensional to multi-dimensional vector variabi-
lity, which is necessary in this case.

To validate the performance of the proposed HSM method,
it is compared to the results of the HTS system [6] under the
same configurations and database[13]. Mel-cepstral and pitch
analysis were substituted by HSM analysis, and MLSA synthe-
sis filter was substituted by the HSM synthesis filter. As descri-
bed above, for each speech frame k, to be analyzed the funda-
mental frequency (F0) was estimated and a voiced/unvoiced fra-
me decision was taken. LSF parameters were extracted for spec-
tral modeling, and logF0 was used for excitation modeling. The
feature vectors were modeled from context dependent HMMs
as described for a general HMM system. At most of the expe-
riments 14 LSF parameters were extracted for harmonic or sto-
chastic spectral modeling plus one parameter for the Gain. Some
experiments were conducted with a higher number of LSF. Ex-
citation modeling is the same for all experiments and will not be
discussed further.

According to the above, the different experiments that were
held are:

1. One main vector of 93 features (HSM parameters with
their derivatives, log F0 with its derivatives) was used.
When a unvoiced frame is analyzed, a simple mean vec-
tor of all the harmonic parts of the voiced frames was
used for the Harmonic part. The mean vector showed to
perform better than a zero vector. Still some saturation
on the synthesized utterances was present mainly at the
voiced/unvoiced boundaries.
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HSM Undecided HTS
35,3 % 35,3 % 29,4 %

53 % 11,7 % 35,3 %

(a)

(b)

Figure 2. Detailed results for the two parts of the perceptual
test. (a) Similarity and (b) Quality.

2. One main 30-dimensional feature vector containing sta-
tic parameters only.The results as expected showed not
smooth transitions at the phoneme boundaries, so high
lack of natural continuity of the voice observed.

3. Two different vectors for the harmonic and the stochastic
parts. The harmonic part was modeled with MSD (15 to
0 dimensions), and the stochastic part was modeled nor-
mally. The same experiment was conducted with a diffe-
rent Arctic database (CMU US KSP ARCTIC 0,95). An
Indian-English male experienced speaker, and again the
naturality of the synthetic voice of our model was signi-
ficantly good.

4. Few additional experiments have been held using more
poles to model spectrum envelope. These experiments
kept the same structure as No 1 but 22 features are ex-
tracted for spectral modeling. Similar results were taken
from this experiment so, the 14-vector size was kept to
reduce the computational load and run time.

As expected best results were given by the 3′rd method, due
to the best modeling. The performance of HSM due to different
modeling approaches strengthens our starting point idea: MSD
manage to better model Harmonic and stochastic parts and con-
sequently better results are achieved. An perceptual test was gi-
ven to 17 people where the same utterances were synthesized
from HTS and HSM methods. The listeners have a variety of
different backgrounds. Four of them are speech synthesis ex-
perts, ten listeners have speech processing background, and th-
ree listeners don’t have experience in speech processing at all.
Each listener evaluated 6 sentence pairs, which were presented
to them in a random order. The test checks the quality of the
synthesized sentences and the voice characteristics similarities
to the original training voice. The listeners had to choose bet-
ween five answers: “A clearly better than B”, ‘A a bit better than
B”, “i can’t decide”, “B clearly better than A”,“B a bit better
than A”. In the similarity test, listeners were asked to choose
which of the two sentences, A or B, was more similar to the
original one. Figure 2 shows the percentage of the number of
times each method was preferred. The results show that the pro-
posed method performed slightly better than the baseline HTS.
Figure 2 as well shows the percentage of “i can’t decide” choi-
ces, and actually at the ’similarity’ test we can see that although
the proposed system performs better, a high rate of the listeners
couldn’t distinguish the difference between the two systems.

6. CONCLUSIONS

In this work, a preliminary work to integrate an asynchro-
nous Harmonic/Stochastic method for speech modeling, in HTS
synthesis system was presented. A perceptual test was perfor-
med to compare the proposed system to the HTS system. The
results show that the proposed model has good performance for
speech synthesis by HMMs. As a future work we will try to use
more specific configurations of the HMM-based system accor-
ding to our model. Furthermore the highest attention will be gi-
ven to extend the MSD property to manage to model Harmonic
and stochastic part more precise. That means to be able to use
MSD not only for variable feature vectors of multi-dimensional
to zerodimensional but as well to multi-dimensional. We expect
that by attempting this approach the performance of our model
will improve.
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